Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
góc ADC=góc DAB+ góc B (theo tính chất góc ngoài của tam giác)
góc ADB= góc DAC + góc C
=> góc ADC- góc ADB=góc B+ góc DAB-(góc C+ góc DAC)
Vì AD là tia phân giác của góc A
=> góc DAB= góc DAC
=>góc ADC- góc ADB=gocsB-góc C=40 độ
mà góc ADC và góc ADB là 2 góc kề bù
=> góc ADC+góc ADB=180 độ
=> góc ADC=(180 độ +40 độ):2=110 độ
KL
Bạn tự vẽ hình nha
Bài giải
a, Ta có : Tổng 3 trong một tam giác bằng 1800
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)
\(\Rightarrow\widehat{A}=80^0\)
Mặt khác : tia phân giác của góc A cắt ABC tại D
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)
Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)
\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)
\(\Rightarrow\widehat{ADC}=110^0\)
Góc A1 + A2 = Goc B + C.
Do Am là tia phân giác ngoài tại đỉnh A nên A1 = A2.
=> Tam giác cân ABC tai A nên góc B = C.
Suy ra : Góc A1 + A1 = Góc C + C
=> Góc A1 = C mà hai góc này nằm ở vị trí so le trong
Do đó : Am // BC.
tam giác ABC có: góc B+ góc C góc BAC = 1800
=> 500 + 500 + góc BAC = 1800
=> góc BAC = 1800 - (500+500) = 800
góc BAn = 1800 - góc BAC = 1800 - 800 = 1000 (do góc BAn là góc ngoài tam giác)
=> góc mAB = \(\frac{BAn}{2}=\frac{100^0}{2}=50^0\) (do Am là p/g của góc BAn)
=> góc mAB = góc ABC = 500 mà chúng ở vị trí SLT => Am//BC (đccm)
chúc pn học tốt!! 458437687486826765276843975849784596783685843576235
ta có : tổng ba góc của 1 tam giác bằng 180 độ => góc A = 180 -( b+c) = 180 - 100 = 80
vì tia AD là tia phân giác của góc A nên : góc ADC = góc ADB = 1/2 góc A = 1/2. 80 =40
Answer:
A) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}\)
\(\Rightarrow\widehat{A}=180^o-100^o=80^o\)
\(\Rightarrow\widehat{DAC}=\frac{\widehat{A}}{2}=40^o\)
B) Ta có: \(\widehat{ADC}=\widehat{B}+\frac{1}{2}\widehat{A}\)
\(=\widehat{A}+\widehat{B}+\widehat{B}\)
\(=180^o-\widehat{C}+\widehat{B}\)
\(=180^o-\left(\widehat{B}-\widehat{C}\right)=140^o\)