Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A C D E
Xét \(\Delta ABC\) Và \(\Delta DEC\) có :
\(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )
\(\widehat{C}\) là góc chung
\(\Rightarrow\)\(\Delta ABC\) ~ \(\Delta DEC\) ( g-g )
Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :
\(BC^2\)= \(AB^2\)\(+\)\(AC^2\)
\(BC^2\)= 32 + 52
\(BC^2\)= 9 + 25
\(BC^2\)= 34
\(BC=\sqrt{34}\)
Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)
\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)
\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc CBA chung
Do đó: ΔAHB\(\sim\)ΔCAB
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: \(HC=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét ΔHAC có AD là phân giác
nên DH/HA=DC/AC
=>DH/3=DC/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DH}{3}=\dfrac{DC}{5}=\dfrac{DH+DC}{3+5}=\dfrac{8}{8}=1\)
Do đó: DH=3cm; DC=5cm
c: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
=>ΔBAD cân tại B
mà BK là đường phân giác
nên BK là đường cao
Xét ΔEFA vuông tại F và ΔEHB vuông tại H có
\(\widehat{FEA}=\widehat{HEB}\)
Do đó: ΔEFA\(\sim\)ΔEHB