Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Trên tia đối AB lấy I sao cho AI = AB
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD
Ta có hình vuông IAMD => IA = IM = MD = DA
Xét tam giác MBI và tam giác CMN
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vìIA=1/3 IN và IA = IM => IM=1/2 MN)
=> góc I = góc M =90 độ (gt)
<=> tg MBI = tg CMI (c - g - c)
=> góc MBI = góc CMN ; BM = CM ⇒ BMC cân ở M
Xét tg BIM và tg EAB
AB = MI
AE = BI
góc I= góc A =90 độ
<=> tg BIM = tg EAB (c - g - c)
=>góc MBI = góc AEB (góc tương ứng)
Ta có:
góc IMB +góc BAM = 90 độ
Mà: góc MBA = góc CMN
=> góc IBM + CMN = 90 độ
=> tg BMC vuông ở M (2)
Từ (1) và (2)
=> Tam giac MCB vuông cân ở M.
=> Góc MCB = 45 độ hay góc ACB+MCD =45 độ
Lại có:
Góc MCD=CMN=MBI=AEB
=> góc ACB+AEB=45 độ (Đpcm)
LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ
Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)
Xét tam giác MAB và tam giác MAC
MB=MC(tam giác MBC đều)
Chung MA
AB=AC(tam giác ABC cân tại A)
=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA
=> góc BMA=30 độ
Xét tam giác BMA và tam giác BCD
góc BMA=BCD(=30)
BM=BC(tam giác MBC đều)
goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )
=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40
=> BAD=(180-40)/2=70
Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)
Xét tam giác BIA và tam giác CIA
AB=AC ( ABC cân tại A)
ABI=ACI(=10)
BI=CI(do BIC đều)
=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20
Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)
Do đó BAI=BDC hay BDC=20
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\) (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD\) cạnh chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
b) \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng); \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)
Xét 2 tam giác vuông: \(\Delta DAM\)và \(\Delta DEC\)có:
\(DA=DE\) (cmt)
\(\widehat{ADM}=\widehat{EDC}\) (dd)
suy ra: \(\Delta DAM=\Delta DEC\) (cạnh góc vuông - góc nhọn kề cạnh ấy)
\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)
c) \(\Delta DAE\) cân tại D (do DA = DE)
\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)
mà \(\widehat{DAM}=\widehat{DEC}\) ( \(=90^0\))
suy ra: \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)
hay \(\widehat{MAE}=\widehat{AEC}\) (đpcm)
a) Xét tam giác ABD và EBD có :
BA = BE;
Cạnh BD chung
\(\widehat{ABD}=\widehat{EBD}\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)
nên \(\widehat{DAM}=\widehat{DEC}\)
Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)
\(\Rightarrow AM=EC\)
c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)
Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
1. Ta có: tan(52o) = \(\frac{AE}{AB}\)
=> AE = AB.tan(52o)
2. Ta có: tan(71o) = \(\frac{AC}{AB}\)
=> AC = AB.tan(71o)
3. Ta có: tan(19o) = \(\frac{AD}{AB}\)
=> AD = AB.tan(19o)
4. \(\frac{AE}{CD}\) = \(\frac{AE}{AC-AD}\)
= \(\frac{AB.tan\left(52^o\right)}{AB.tan\left(71^o\right)-AB.tan\left(19^o\right)}\)
= \(\frac{tan\left(52^o\right)}{tan\left(71^o\right)-tan\left(19^o\right)}\)
= \(\frac{\sin\left(52^o\right)}{\cos\left(52^o\right)}\)\(\frac{\cos\left(71^o\right).\cos\left(19^o\right)}{\sin\left(71^o-19^o\right)}\)
= \(\frac{\cos\left(71^o\right).\cos\left(19^o\right)}{\cos\left(52^o\right)}\)
= \(\frac{1}{2}\)\(\frac{\cos\left(71^o+19^o\right)+\cos\left(71^o-19^o\right)}{\cos\left(52^o\right)}\)
= \(\frac{1}{2}\)\(\frac{\cos\left(90^o\right)+\cos\left(52^o\right)}{\cos\left(52^o\right)}\)
= \(\frac{1}{2}\)
to khong thich lam may cai dang nay to biet lam day