Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ADĐL pitago vào tam giác vuông DCB , có :
BC2 + DC2 = DB2
=> 62 + 82 = BD2
=> BD2 = 100
=> BD = 10 cm
b)
Xét tam giác ADB và tam giác AHD , có :
A^ = H^ = 90O
D^ ; góc chung
=> tam giác AHD ~ tam giác BAD (g.g)
c)
Vì tam giác AHD ~ tam giác BAD ( câu b )
=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)
=> AD2 = HD . BD
d)
a) ΔABD vuông tại A (ABCD là hình chữ nhật)
⇒DB2=AB2+AD2(Đinh lí pitago)
DB2=82+62
⇔DB=\(\sqrt{100}\)=10(cm)
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
hình bạn tự vé nhé.
tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=10\left(DO-BC>0\right)\)
b) xét \(\Delta ABC\) VÀ \(\Delta HBA\) CÓ:
\(\widehat{BAC}=\widehat{AHB}\)
\(\widehat{B}\) CHUNG
\(\Rightarrow\Delta ABC\) đồng dạng vs \(\Delta HBA\)
c)sửa đề:\(AB^2=BH.BC\)
TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)
\(\Rightarrow AH^2=BH.BC\)