Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM
đề có thiếu ko đó
A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004
đặt B = 23 + 24 + 25 + ...+ 22003 + 22004
2B= 24 + 25 + 26 + ....+ 22004 + 22005
2B-B= ( 24 + 25 + 26 + ....+ 22004 + 22005 ) - ( 23 + 24 + 25 + ...+ 22003 + 22004 )
B = 24 + 25 + 26 + ....+ 22004 + 22005 - 23 - 24 - 25 - ...- 22003 - 22004
B = 22005 - 23
B = 22005 - 8
=> A = 4 + B = 4 + 22005 - 8 = 22005 - 4 = .....
Cách1:
Chọn MS chung là 3.5.7.8=> Mẫu số chẵn
Tử số của PS 1/2 : 3.5.7.4 ;
PS 1/3: 5.7.8
PS 1/4: 3.5.7.2
PS 1/5: 3.7.8
PS 1/6: 5.7.4
=> Các TS này đều chẵn
PS 1/8 : 3.5.7 => TS này lẻ
Vậy TS là số lẻ mà MS là số chẵn.
=> tổng trên không là số tự nhiên
Cách 2:
Coi tổng trên là S nhé
1/3+1/4+1/5+1/6+1/7+1/8 > 6/8 =3/4
Vậy S > 1/2 +3/4 = 5/4. (1)
Mà 1/4+1/5+1/6+1/7 < 1/4 x 4 = 1
1/2 + 1/3 +1/8 = 23/24
Vậy S< 1 + 23/24 < 2 (2)
Từ (1) và (2) => 5/4 < S <2
Vậy S cũng chẳng phải số tự nhiên.
số chính phương là một số bình phương lên
lúy thừa là số mũ
4^3=4.4.4=64
giúp tớ nhé ,tớ mới bị từ 290
ai giúp mình mình giúp lại
cảm ơn trước
A=(n+1)n:2
Mà n(n+1) tận cùng là 0,2,6
Nên A t/c khác 2,4,7,9 vì khi nhân 2 lên thì t/c là 4,8,4,8 khác với 0,2,6
Ta có công thức: \(A=1+2+...+n=\frac{\left(n+1\right).n}{2}\)
Mà n(n + 1) chỉ có thể có chữ số tận cùng là 0, 2, 6 nên A chỉ có thể có chữ số tận cùng là 0, 1, 3, 5, 6, 8.
Vậy A không thể có tận cùng là chữ số 2, 4, 7, 9.
Tổng A có n số hạng nên
A= 1+ 2+ 3 +...+n = (n+1)xn : 2
lại có: nx(n+1) là tích 2 STN liên tiếp nên nx(n+1) chỉ có thể có tận cùng là 0, 2 hoặc 6
Vì thế nên (n+1)xn : 2 chỉ có thể có tận cùng là 0; 5; 1; 6; 3 hoặc 8
Vậy tổng A=1+2+...+n không thể có tận cùng là 2,4,7,9
Tổng A có n số hạng nên A= 1+ 2+ 3 +...+n = (n+1)xn : 2 lại có: nx(n+1) là tích 2 STN liên tiếp nên nx(n+1) chỉ có thể có tận cùng là 0, 2 hoặc 6 Vì thế nên (n+1)xn : 2 chỉ có thể có tận cùng là 0; 5; 1; 6; 3 hoặc 8 Vậy tổng A=1+2+...+n không thể có tận cùng là 2,4,7,9
Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)
= \((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)
= \(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)
= \(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
Có: \(B=1+4+4^2+...+4^{2009}\)
=> \(4.B=4.\left(1+4+4^2+...+4^{2019}\right)\)
\(4B=4+4^2+4^3+...+4^{2020}\)
=> \(4B-B=\left(4+4^2+4^3+...+4^{2020}\right)-\left(1+4+4^2+...+4^{2019}\right)\)
\(3B=\left(4-4\right)+\left(4^2-4^2\right)+...+\left(4^{2019}-4^{2019}\right)+\left(4^{2020}-1\right)\)
\(3B=4^{2020}-1\)
=> \(3B+1=4^{2020}-1+1\)
\(3B+1=4^{2020}\)
Vậy 3B + 1 là lũy thừa của 4.
\(B=1+4+4^2+......+4^{2019}\)
\(\Rightarrow4B=4+4^2+4^3+.......+4^{2020}\)
\(\Rightarrow4B-B=3B=4^{2020}-1\)
Ta có: \(3B+1=4^{2020}-1+1=4^{2020}\)là lũy thừa của 4 ( đpcm )