Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho \(3x^2-4x=0\)
\(\Rightarrow3.x.x-4x=0\)
\(\Rightarrow x.\left(3x-4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\)
Có \(3x - 4 =0\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy x= 0 hoặc x =\(\dfrac{4}{3}\)là nghiệm của đa thức \(3x^2-4x\)
b) Cho \(x+3x^2=0\)
\(\Rightarrow x+3.x.x=0\)
\(\Rightarrow x.\left(3x+1\right)=0\)
Suy ra x =0
hoặc \(3x+1=0\)
\(\Rightarrow\)3x=-1
x=\(\dfrac{-1}{3}\)
Vậy ...
Bài 3: Tìm nghiệm các đa thức sau:
a. 3x2 - 4x
Gọi P(x) là đa thức 3x2 - 4x.
Cho P(x) = 0
=> 3x2 - 4x = 0
=> x (3x - 4)= 0
Suy ra:
TH1: x = 0
TH2: 3x - 4 = 0
_____3x___= 0 + 4
_____3x___= 4
______x___= \(\dfrac{4}{3}\)
Vậy x = \(\dfrac{4}{3}\) là nghiệm của đa thức 3x2 - 4x.
b. x + 3x2
Gọi Q(x) là đa thức x+3x2
Cho Q(x) = 0
=> x+3x2 = 0
=> x ( 3x) = 0
Suy ra:
TH1: x = 0
TH2: 3x = 0
=> x = 0.
Vậy x = 0 là nghiệm của đa thức x + 3x2 .
Chúc bn hx tốt!
Câu 2:
a) Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)
Vì \(x^2\ge0\forall x\)
nên \(x^2+3\ge3>0\forall x\)
Do đó: \(x^2=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0
b)\(B=\left(x^4+5\right)^2\)
Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+5\ge5\forall x\)
\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)
Dấu '=' xảy ra khi
\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0
c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2
Câu 3:
a) \(A=5-3\left(2x-1\right)^2\)
Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi
\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)
b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\) là \(\frac{1}{3}\) khi x=1
c) \(C=\frac{x^2+8}{x^2+2}\)
Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)
\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)
Dấu '=' xảy ra khi
\(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
a) \(\left|a\right|+a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|+a=a+a=2a.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|+a=-a+a=0.\)
b) \(\left|a\right|-a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|-a=a-a=0.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|-a=-a-a=-2a.\)
d) \(\left|a\right|:a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|:a=a:a=1.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|:a=-a:a=-1.\)
Chúc bạn học tốt!
a)Ko thể rút gọn
b)Ko thể rút gọn
c)a^2
d)Ko thể rút gọn
e)(-2)|x+3|+3x-3
g)Biểu thức ko thể rút gọn
a) \(\left|a\right|+a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|+a=a+a=2a.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|+a=-a+a=0.\)
b) \(\left|a\right|-a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|-a=a-a=0.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|-a=-a-a=-2a.\)
d) \(\left|a\right|:a\)
+) Với \(a>0\) thì \(\left|a\right|=a.\)
⇒ \(\left|a\right|:a=a:a=1.\)
+) Với \(a< 0\) thì \(\left|a\right|=-a.\)
⇒ \(\left|a\right|:a=-a:a=-1.\)
Bài 3:
a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)
b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)
Bài 2:
\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)
\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)
\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)
... câu cuối bn lm dài dòng quá r ạ -)) cái dòng sra là bỏ luôn dấu GTTĐ của VT r ạ :))
a) \(\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow ab+2b+1=ab+a+b+1\)
\(\Leftrightarrow b=a\)
Câu a sai đề, hình như pk là \(\frac{a}{b}=1\)
b) \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)
\(\Leftrightarrow\left(2a+2\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)
\(\Leftrightarrow\left(2a+2\right)\left(a+b\right)-\left(a+b\right)\left(a+b+2\right)=0\)
\(\Leftrightarrow\left(2a+2-a-b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow a^2-b^2=0\)
Hình như đề cx sai