Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.
Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.
Tam giác MNP vuông tại M có góc N là 60 độ.
Trên tia đối tia MN lấy điểm Q sao cho MQ=MN
Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.
Tương tự với bài toán của chúng ta :
\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)
\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)
\(\Rightarrow HB=\frac{1}{4}BC\)
Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)
nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{DAH}=60^o\)
\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )
Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH
\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)
\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều
\(\Rightarrow KB=AB\)
Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.
Vậy ....
a)Xét △ABD và △CED có
AD=DC ( vì D là trung điểm của AC)
góc ADB=góc CDE( 2 góc đối đỉnh)
BD=ED ( giả thiết)
=> △ABD = △CED(c-g-c)
b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ
Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có
KD : cạnh chung
AD=CD(Vì D là trung điểm của AC)
=> △ADK=△CDK(2 cạnh góc vuông )
=> AK=CK( 2 cạnh tương ứng)
vậy AK=CK
c) Xét △BDk và △EDH có
BD=DE(giả thiết )
góc BDK=góc EDH(2 góc đối đỉnh)
DK=DH( giả thiết)
=>△BDK =△EDH (c-g-c)
=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH
=>BC//EH
Xét △KDC và△HDA có
AD=DC (Vì D là trung điểm của AC)
góc KDC= góc HDA(2 góc đối đỉnh )
KD=DH (giả thiết)
=>△KDC =△HDA(c-g-c)
=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH
=>BC //AH
Vì BC//EH
mà BC//AH => 3 điểm A,H,E thẳng hàng
Vậy 3 điểm A,H,E thẳng hàng
a)Xét △ABD và △CED có
AD=DC ( vì D là trung điểm của AC)
góc ADB=góc CDE( 2 góc đối đỉnh)
BD=ED ( giả thiết)
=> △ABD = △CED(c-g-c)
b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ
Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có
KD : cạnh chung
AD=CD(Vì D là trung điểm của AC)
=> △ADK=△CDK(2 cạnh góc vuông )
=> AK=CK( 2 cạnh tương ứng)
vậy AK=CK
c) Xét △BDk và △EDH có
BD=DE(giả thiết )
góc BDK=góc EDH(2 góc đối đỉnh)
DK=DH( giả thiết)
=>△BDK =△EDH (c-g-c)
=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH
=>BC//EH
Xét △KDC và△HDA có
AD=DC (Vì D là trung điểm của AC)
góc KDC= góc HDA(2 góc đối đỉnh )
KD=DH (giả thiết)
=>△KDC =△HDA(c-g-c)
=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH
=>BC //AH
Vì BC//EH
mà BC//AH => 3 điểm A,H,E thẳng hàng
Vậy 3 điểm A,H,E thẳng hàng
Đề bài yêu cầu gì vậy bạn?