K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

15698194_253524571734033_4713439022004743172_n.jpg?oh=948a6d0f10a6201dc566a5a088ada0fe&oe=58F24E0A

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

15698044_253524568400700_3325955909414912243_n.jpg?oh=03dc51b6b35ead6d6ba6126e75876e16&oe=58ECFE8D

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

26 tháng 12 2016

dung roi

8 tháng 12 2016

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\)\(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)

Vậy \(\widehat{HAB}=30^0\)

8 tháng 12 2016

Bạn tự vẽ hình nhé

8 tháng 12 2016

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)

Vậy : \(\widehat{HAB}=30^0\)

8 tháng 12 2016

Bạn tự vẽ hình nha

4 tháng 1 2019

bạn ơi sao

góc B lại = 600 được vậy

hay là 60 vậy

4 tháng 1 2019

a, TG HAB có :

BAH +  BHA + B = 180

=> BAH + 90 + 60 = 180

=> HAB = 30 

4 tháng 1 2019

a, TG HAB có :

BAH +  BHA + B = 180

=> BAH + 90 + 60 = 180

=> HAB = 30 

4 tháng 1 2019

b,chứng minh tam giác AHI và tam giác ADI bằng nhau đúng ko

Xét TG AIH và TG AID có :

AH = AD (gt)

AI cạnh chung

HI = ID (gt)

=> TG AIH = TG AID (c-c-c)