Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A+B+C=\(x^2yz+xy^2z+xyz^2\)
=\(xyz\left(x+y+z\right)\)
Mà x+y+z=1\(\Rightarrow\)A+B+C=xyz(đpcm)
A = x2yz; B = xy2z; C = xyz2 => A + B + C = x2yz + xy2z + xyz2 = xyz(x + y + z) = xyz (do x + y + z = 1)
a)a/b=c/d
suy ra ad =bc suy ra ad+bd=bc+bd suy ra d(a+b)=b(c+d) suy ra a+b/b=c+d/d
b)a/b=c/d
suy ra ad =bc suy ra ad=bc suy ra ad-bd =bc-bd suy ra (a-b)d=b(c-d) nên a-b/b=c-d/d
c)a/b = c/d suy ra cb = ad suy ra cb+ac =ad+ac suy ra c(a+b)=a(c+d) nên a/a+b=c/c+d
d)a/b=c/d suy ra ad=cb suy ra ad+ac=cb+ac suy ra ac-ad=cb-ac suy ra a(c-d)=c(b-a) nên a/b-a=c/c-d
e)a/b=c/d suy ra a/b2 =a/b . a/b =c/d .c/d =c/d 2
g)từ câu e ta suy ra dc ;a^2/b^2+1=c^2/d^2+1 nên a^2+b^2/b^2=c^2+d^2/d^2
chổ nào bn ko hiểu ở bài này bạn có thể hỏi mình
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
⇒a2+b2b2+c2 =a2+acac+c2 =a(a+c)c(a+c) =ac
Đúng 1 k
nha