K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

\(a^a+b^4=\left(a+b\right)^4-2a^2b^2=10^4-2\times4^2=1000-32=968\)\(968\)

\(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=10\left[a^4+b^4-ab\left(a^2+b^2\right)+a^2b^2\right]\)

\(=10\left[968-4\times92+16\right]\)\(=6160\)

24 tháng 7 2016

Từ \(a+b=10=>\left(a+b\right)^2=100=>a^2+2ab+b^2=100=>a^2+2.4+b^2=100.\)

\(\Rightarrow a^2+b^2=92\)

\(\left(a^2+b^2\right).\left(a^3+b^3\right)=a^5+a^2b^3+a^3b^2+b^5=92.880\) 

\(=>a^5+b^5+a^2b^2\left(a+b\right)=80960\) 

\(=>a^5+b^5+\left(ab\right)^2\left(a+b\right)=80960\)

\(=>a^5+b^5+4^2.10=80960\)

\(=>a^5+b^5=80800\)

2:

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)

=>x=16/3; y=8; z=32/3

A=3x+2y-6z

=3*16/3+2*8-6*32/3

=16+16-64

=-32

b: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

=>x=5căn 2; y=6căn 2; y=7căn 2

B=xy-yz

=y(x-z)

=6căn 2(5căn 2-7căn 2)

=-6căn 2*2căn 2

=-24

10 tháng 8 2023

bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2

a=2.3=6 ; b=2.4=8 ;c=2.5=10

M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188

"nhưng bài còn lại làm tương tự"

NV
11 tháng 7 2021

\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=29\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=133\)

\(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=641\)

\(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-\left(ab\right)^2\left(a+b\right)=3157\)

\(a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}=\pm3\)

11 tháng 7 2021

a, `A = a^2 + b^2 = (a + b)^2 - 2ab`

Thay `a + b = 7 ; ab = 10` vào A ta được:

`A = 7^2 - 2 . 10 = 29`

Vậy `A = 29` tại `a + b = 7 ; ab = 10`

b, `B = a^3 + b^3 = (a + b)^3 - 3ab (a + b)`

Thay `a + b = 7 ; ab = 10` vào B ta được:

`B = 7^3 - 3 . 10 . 7 = 133`

Vậy `B = 133` tại `a + b = 7 ; ab = 10`

c, Ta có: `a^2 + b^2 = 29` (chứng minh câu a)

`=> (a^2 + b^2)^2 = 29^2`

`=> a^4 + 2a^2b^2 + b^4 = 841`

Thay `ab = 10` vào biểu thức trên ta được:

`a^4 + 2 . 10^2 + b^4 = 841`

`=> a^4 + b^4 = 841 - 2 . 10^2 = 641`

hay `C = 641`

d, Ta có: `(a^3 + b^3) (a^2 + b^2) `

`= a^5 + a^3b^2 + a^2b^3 + b^5`

`= a^5 + b^5 + a^2b^2 (a + b)`

hay `133 . 29 = a^5 + b^5 + 10^2 . 7`

 

`=> a^5 + b^5 = 3157`

hay `D = 3157`

e, Ta có: \(E=a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}\)

Thay `a + b = 7` và `ab = 10` vào biểu thức trên ta được:

\(E=\pm\sqrt{7^2-4.10}=\pm3\)

 

23 tháng 9 2016

có a+b+c = 0 
=> a^2+b^2+c^2+2(ab+bc+ac) = 0
mà a^2+b^2+c^2 = 2
=> ab+bc+ac = -1
=> a^2b^2+b^2c^2+a^2c^2 + 2ab^2c+2a^2bc+2abc^2 = 1
=>a^2b^2+b^2c^2+a^2c^2 + 2abc(b+a+c) = 1
=>a^2b^2+b^2c^2+a^2c^2 = 1
Ta bình phong cái a^2+b^2+c^2 lên 
đk là
a^4+b^4+c^4 + 2a^2b^2+2a^2c^2+2b^2c^2=4
=> a^4+b^4+c^4 + 2(a^2b^2+a^2c^2+b^2c^2) = 4
mà ở trên là a^2b^2+b^2c^2+a^2c^2 = 1
=> a^4+b^4+c^4 +1 =4
a^4+b^4+c^4 = 3 

23 tháng 9 2016

a) và b) là hai phần khác nhau nhé, ko phải là chung 1 phần đâu nha các bạn

14 tháng 9 2017

Ngay kia minh giup

14 tháng 9 2017

ok dc lun

20 tháng 10 2019

a = 3

b = 2

20 tháng 10 2019

vãi cả trả lời