Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)
\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)
\(f'\left(0\right)=-sin\left(0\right)=0\)
\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)
\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)
\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)
\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)
4.
\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(=3-2=1\)
\(\Rightarrow y'=0\) ; \(\forall x\)
5.
\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)
\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)
\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)
1/ \(y=x^{-1}+\frac{2}{3}x^{-2}-\frac{2}{3}\Rightarrow y'=-\frac{1}{x^2}-\frac{4}{3x^3}\)
\(3x^3y'+3x+4=3x^3\left(-\frac{1}{x^2}-\frac{4}{3x^3}\right)+3x+4\)
\(=-3x-4+3x+4=0\) (đpcm)
2/ \(y'\le0\)
\(\Leftrightarrow3x^2-10x+7\le0\)
\(\Leftrightarrow1\le x\le\frac{7}{3}\)
Lời giải:
\(y=\sqrt{1-x^2}\Rightarrow y'=\frac{-2x}{2\sqrt{1-x^2}}=\frac{-x}{\sqrt{1-x^2}}=\frac{-x}{y}\)
\(\Rightarrow y''=\frac{(-x)'.y-(-x).y'}{y^2}=\frac{-y+xy'}{y^2}\)
Do đó:
\(y^2.y''-xy'+y=y^2.\frac{-y+xy'}{y^2}-xy'+y=(-y+xy')-xy'+y=0\)
Ta có đpcm.
Lời giải:
$y=\frac{x-3}{x+4}\Rightarrow y'=\frac{7}{(x+4)^2}; y''=\frac{-14}{(x+4)^3}$
\(A=2\left[\frac{7}{(x+4)^2}\right]^2+(1-\frac{x-3}{x+4}).\frac{-14}{(x+4)^3}\)
\(=\frac{98}{(x+4)^4}-\frac{98}{(x+4)^4}=0\)
\(y'=\dfrac{\left(x+\sqrt{1+x^2}\right)'}{2\sqrt{x+\sqrt{1+x^2}}}=\dfrac{1+\dfrac{x}{\sqrt{1+x^2}}}{2\sqrt{x+\sqrt{1+x^2}}}\)
\(\Rightarrow2\sqrt{1+x^2}.y'=\dfrac{2\sqrt{1+x^2}\left(1+\dfrac{x}{\sqrt{1+x^2}}\right)}{2\sqrt{x+\sqrt{1+x^2}}}\)
\(=\dfrac{\sqrt{1+x^2}+x}{\sqrt{x+\sqrt{1+x^2}}}=\sqrt{x+\sqrt{1+x^2}}=y\) (đpcm)
\(y'=-3x^2-6mx+6m=3\left(-x^2-2mx+2m\right)\)
Đặt \(f\left(x\right)=-x^2-2mx+2m\)
a. \(y'=0\) có 2 nghiệm \(x_1\le x_2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\-f\left(1\right)=1>0\\\dfrac{x_1+x_2}{2}=-2m< 1\end{matrix}\right.\) \(\Rightarrow m\le-2\)
b. \(y'=0\) có 2 nghiệm cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\x_1x_2=-2m>0\\\end{matrix}\right.\) \(\Rightarrow m\le-2\)
c. \(\Delta'=m^2+2m>0\Rightarrow\left\{{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+1}{2}\\x_2=\dfrac{-2m-1}{2}\end{matrix}\right.\)
\(x_1x_2=-2m\Rightarrow\left(\dfrac{-2m+1}{2}\right)\left(\dfrac{-2m-1}{2}\right)=-2m\)
\(\Leftrightarrow4m^2-1=-8m\Rightarrow4m^2+8m-1=0\Rightarrow...\)
d.
\(y'< 0\) ;\(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\\\Delta'=m^2+2m< 0\end{matrix}\right.\)
\(\Leftrightarrow-2< m< 0\)
e.
\(y'< 0\) ; \(\forall x< 0\)
\(\Leftrightarrow-x^2-2mx+2m< 0\) ;\(\forall x< 0\)
TH1: \(\Delta'=m^2+2m< 0\Leftrightarrow-2< m< 0\)
TH2: \(\left\{{}\begin{matrix}\Delta'\ge0\\0< x_1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m\ge0\\x_1+x_2=-2m>0\\x_1x_2=-2m>0\end{matrix}\right.\) \(\Rightarrow m\le-2\)
\(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm thỏa mãn \(x_1< k< x_2\) khi và chỉ khi \(a.f\left(k\right)< 0\)
Đây là nguyên lý của tam thức bậc 2 từ lớp 10 thì phải
Phương Anh Đỗ
Nhìn đề đoán là \(y=\frac{1}{3}mx^3+mx^2+\left(m+1\right)x+2\)
\(y'=mx^2+2mx+m+1\)
a/ Với \(m=0\) thỏa mãn
Với \(m\ne0\) để \(y'>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-m\left(m+1\right)< 0\end{matrix}\right.\) \(\Rightarrow m>0\)
b/ Để \(y'=0\) có 2 nghiệm trái dấu
\(\Leftrightarrow m\left(m+1\right)< 0\Rightarrow-1< m< 0\)
c/ \(\left\{{}\begin{matrix}\Delta'=-m>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{m+1}{m}>0\end{matrix}\right.\) \(\Rightarrow m< -1\)
d/ \(x_1< 1< x_2\)
\(\Rightarrow m.y'\left(1\right)< 0\)
\(\Leftrightarrow m\left(m+2m+m+1\right)< 0\)
\(\Leftrightarrow m\left(4m+1\right)< 0\Rightarrow-\frac{1}{4}< m< 0\)
ai bảo vậy Xuân Tuấn Trịnh , theo tui thì khác chứ nhỉ !!!
ai bảo vậy Xuân Tuấn Trịnh , theo tui thì khác chứ nhỉ !!!
\(y=\frac{x-3}{x-4}\Rightarrow y'=\frac{-1}{\left(x-4\right)^2}\) ; \(y''=\frac{2}{\left(x-4\right)^3}\)
\(2\left(y'\right)^2=\frac{2}{\left(x-4\right)^4}\)
\(\left(y-1\right)y''=\left(\frac{x-3}{x-4}-1\right).\frac{2}{\left(x-4\right)^3}=\frac{1}{\left(x-4\right)}.\frac{2}{\left(x-4\right)^3}=\frac{2}{\left(x-4\right)^4}\)
\(\Rightarrow2\left(y'\right)^2=\left(y-1\right)y''\)