Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
\(\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}=\frac{\left(x^4+y^4+z^4+t^4\right)\left(x^2+y^2+z^2+t^2\right)}{\left(x^3+y^3+z^3+t^3\right)\left(x^2+y^2+z^2+t^2\right)}\)
\(\ge\frac{x^3+y^3+z^3+t^3}{x^2+y^2+z^2+t^2}=\frac{\left(x^3+y^3+z^3+t^3\right)\left(x+y+z+t\right)}{\left(x^2+y^2+z^2+t^2\right)\left(x+y+z+t\right)}\)
\(\ge\frac{x^2+y^2+z^2+t^2}{x+y+z+t}\ge\frac{\left(x+y+z+t\right)^2}{4\left(x+y+z+t\right)}=\frac{1}{4}\)
Dấu "=" xảy ra tại x=y=z=t=1/4
Bài làm có tham khảo của GOD Đạt Hồ
a/ \(P\ge x+y+z+\frac{13}{\left(x+y+z\right)^2}=\frac{13\left(x+y+z\right)}{27}+\frac{13\left(x+y+z\right)}{27}+\frac{13}{\left(x+y+z\right)^2}+\frac{1}{27}\left(x+y+z\right)\)
\(P\ge3\sqrt[3]{\frac{13^3\left(x+y+z\right)^2}{27^2\left(x+y+z\right)^2}}+\frac{1}{27}.3\sqrt[3]{xyz}=\frac{40}{9}\)
\(P_{min}=\frac{40}{9}\) khi \(x=y=z=1\)
2/Chia cả tử và mẫu cho \(a^2\):
\(P=\frac{a^2+\frac{1}{a^2}+2+a+\frac{1}{a}+1}{a+\frac{1}{a}}=\frac{\left(a+\frac{1}{a}\right)^2+a+\frac{1}{a}+1}{a+\frac{1}{a}}\)
Đặt \(a+\frac{1}{a}=x\ge2\)
\(\Rightarrow P=\frac{x^2+x+1}{x}=x+\frac{1}{x}+1=\frac{x}{4}+\frac{1}{x}+\frac{3x}{4}+1\)
\(\Rightarrow P\ge2\sqrt{\frac{x}{4x}}+\frac{3.2}{4}+1=\frac{7}{2}\)
\(P_{min}=\frac{7}{2}\) khi \(x=2\) hay \(a=1\)
2) Có: \(x^3+y^3=\sqrt{\left(x.x^2+y.y^2\right)^2}\le\sqrt{\left(x^2+y^2\right)\left(x^4+y^4\right)}\)
And: \(\sqrt{x^3y^3}=\left(\sqrt{xy}\right)^6\le\left(\frac{x+y}{2}\right)^6=1\)
\(\Rightarrow\)\(x^3y^3\left(x^3+y^3\right)\le\sqrt{x^3y^3}\sqrt{x^3y^3\left(x^2+y^2\right)\left(x^4+y^4\right)}=\sqrt{xy\left(x^2+y^2\right).x^2y^2\left(x^4+y^4\right)}\)
Theo bài 1 thì \(xy\left(x^2+y^2\right)\le2\) do đó theo cách đặt \(x^2=a;y^2=b\) ta cũng có: \(x^2y^2\left(x^4+y^4\right)=ab\left(a^2+b^2\right)\le2\)
Do đó: \(x^3y^3\left(x^3+y^3\right)\le\sqrt{2.2}=2\) ( đpcm )
\(VT=\frac{x^4}{x^4+3xyzt}+\frac{y^4}{y^4+3xyzt}+\frac{z^4}{z^4+3xyzt}\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+12xyzt}\)
Có: \(4abcd=4\sqrt{a^2b^2.c^2d^2}\le2\left(a^2b^2+c^2d^2\right)\)
Tương tự, ta cũng có:
\(4abcd\le2\left(a^2c^2+b^2d^2\right)\)
\(4abcd\le2\left(d^2a^2+b^2c^2\right)\)
\(\Rightarrow\)\(VT\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+2\left(xy+yz+zt+tx+yz+zt\right)}=1\) ( đpcm )
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
\(P=x+\left(y^2+1\right)+\left(z^3+1+1\right)-3\ge x+2y+3z-3\)
Ta lại có: \(6=\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{\left(1+2+3\right)^2}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)
\(\Rightarrow P\ge6-3=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
bạn làm ra câu này chưa ạ ? giúp mình với
Holder:
\(S=\left(x^3+t^3\right)+8\left(y^3+z^3\right)\ge\dfrac{1}{4}\left(x+t\right)^3+2\left(y+z\right)^3=\dfrac{1}{4}\left[\left(x+t\right)^3+8\left(y+z\right)^3\right]\)
\(=\left[\left(x+t\right)^3+8\left(y+z\right)^3\right]\left(1+\dfrac{1}{\sqrt{8}}\right)\left(1+\dfrac{1}{\sqrt{8}}\right).\dfrac{2}{9+2\sqrt{8}}\)
\(\ge\left(x+y+z+t\right)^3.\dfrac{2}{9+2\sqrt{8}}=\dfrac{4^3.2}{9+2\sqrt{8}}\)
Dấu = xảy ra khi \(x=t=\dfrac{2\sqrt{8}}{\sqrt{8}+1},y=z=\dfrac{2}{\sqrt{8}+1}\)