\(x+y+z+t=4\). Tìm min \(S=x^3+8y^3+8z^3+t^3\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

bạn làm ra câu này chưa ạ ? giúp mình với

10 tháng 12 2018

Holder:

\(S=\left(x^3+t^3\right)+8\left(y^3+z^3\right)\ge\dfrac{1}{4}\left(x+t\right)^3+2\left(y+z\right)^3=\dfrac{1}{4}\left[\left(x+t\right)^3+8\left(y+z\right)^3\right]\)

\(=\left[\left(x+t\right)^3+8\left(y+z\right)^3\right]\left(1+\dfrac{1}{\sqrt{8}}\right)\left(1+\dfrac{1}{\sqrt{8}}\right).\dfrac{2}{9+2\sqrt{8}}\)

\(\ge\left(x+y+z+t\right)^3.\dfrac{2}{9+2\sqrt{8}}=\dfrac{4^3.2}{9+2\sqrt{8}}\)

Dấu = xảy ra khi \(x=t=\dfrac{2\sqrt{8}}{\sqrt{8}+1},y=z=\dfrac{2}{\sqrt{8}+1}\)

26 tháng 8 2019

3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)

=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)

AD bđt cosi vs hai số dương có:

\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)

\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)

\(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))

=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)

<=> P \(\ge4.5\)

Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)

=> a=2,b=3

Vậy minP=4.5 <=>a=1,b=2

16 tháng 1 2020

\(\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}=\frac{\left(x^4+y^4+z^4+t^4\right)\left(x^2+y^2+z^2+t^2\right)}{\left(x^3+y^3+z^3+t^3\right)\left(x^2+y^2+z^2+t^2\right)}\)

\(\ge\frac{x^3+y^3+z^3+t^3}{x^2+y^2+z^2+t^2}=\frac{\left(x^3+y^3+z^3+t^3\right)\left(x+y+z+t\right)}{\left(x^2+y^2+z^2+t^2\right)\left(x+y+z+t\right)}\)

\(\ge\frac{x^2+y^2+z^2+t^2}{x+y+z+t}\ge\frac{\left(x+y+z+t\right)^2}{4\left(x+y+z+t\right)}=\frac{1}{4}\)

Dấu "=" xảy ra tại x=y=z=t=1/4

Bài làm có tham khảo của GOD Đạt Hồ

19 tháng 1 2020
Cho mình hỏi là bạn ấy dùng bất đẳng thức gì vây
NV
12 tháng 11 2019

a/ \(P\ge x+y+z+\frac{13}{\left(x+y+z\right)^2}=\frac{13\left(x+y+z\right)}{27}+\frac{13\left(x+y+z\right)}{27}+\frac{13}{\left(x+y+z\right)^2}+\frac{1}{27}\left(x+y+z\right)\)

\(P\ge3\sqrt[3]{\frac{13^3\left(x+y+z\right)^2}{27^2\left(x+y+z\right)^2}}+\frac{1}{27}.3\sqrt[3]{xyz}=\frac{40}{9}\)

\(P_{min}=\frac{40}{9}\) khi \(x=y=z=1\)

2/Chia cả tử và mẫu cho \(a^2\):

\(P=\frac{a^2+\frac{1}{a^2}+2+a+\frac{1}{a}+1}{a+\frac{1}{a}}=\frac{\left(a+\frac{1}{a}\right)^2+a+\frac{1}{a}+1}{a+\frac{1}{a}}\)

Đặt \(a+\frac{1}{a}=x\ge2\)

\(\Rightarrow P=\frac{x^2+x+1}{x}=x+\frac{1}{x}+1=\frac{x}{4}+\frac{1}{x}+\frac{3x}{4}+1\)

\(\Rightarrow P\ge2\sqrt{\frac{x}{4x}}+\frac{3.2}{4}+1=\frac{7}{2}\)

\(P_{min}=\frac{7}{2}\) khi \(x=2\) hay \(a=1\)

12 tháng 11 2019

cảm ơn

22 tháng 7 2019

2) Có: \(x^3+y^3=\sqrt{\left(x.x^2+y.y^2\right)^2}\le\sqrt{\left(x^2+y^2\right)\left(x^4+y^4\right)}\)

And: \(\sqrt{x^3y^3}=\left(\sqrt{xy}\right)^6\le\left(\frac{x+y}{2}\right)^6=1\)

\(\Rightarrow\)\(x^3y^3\left(x^3+y^3\right)\le\sqrt{x^3y^3}\sqrt{x^3y^3\left(x^2+y^2\right)\left(x^4+y^4\right)}=\sqrt{xy\left(x^2+y^2\right).x^2y^2\left(x^4+y^4\right)}\)

Theo bài 1 thì \(xy\left(x^2+y^2\right)\le2\) do đó theo cách đặt \(x^2=a;y^2=b\) ta cũng có: \(x^2y^2\left(x^4+y^4\right)=ab\left(a^2+b^2\right)\le2\)

Do đó: \(x^3y^3\left(x^3+y^3\right)\le\sqrt{2.2}=2\) ( đpcm ) 

22 tháng 7 2019

\(VT=\frac{x^4}{x^4+3xyzt}+\frac{y^4}{y^4+3xyzt}+\frac{z^4}{z^4+3xyzt}\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+12xyzt}\)

Có: \(4abcd=4\sqrt{a^2b^2.c^2d^2}\le2\left(a^2b^2+c^2d^2\right)\)

Tương tự, ta cũng có: 

\(4abcd\le2\left(a^2c^2+b^2d^2\right)\)

\(4abcd\le2\left(d^2a^2+b^2c^2\right)\)

\(\Rightarrow\)\(VT\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+2\left(xy+yz+zt+tx+yz+zt\right)}=1\) ( đpcm ) 

NV
20 tháng 2 2020

\(P=x+\left(y^2+1\right)+\left(z^3+1+1\right)-3\ge x+2y+3z-3\)

Ta lại có: \(6=\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{\left(1+2+3\right)^2}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)

\(\Rightarrow P\ge6-3=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)