Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(xyzt=1\) ta có: \(\dfrac{1}{x^3\left(yz+zt+ty\right)}=\dfrac{xyzt}{x^3\left(yz+zt+ty\right)}=\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\)
Đánh giá tương tự ta có:
\(pt\Leftrightarrow\dfrac{yzt}{x^2\left(yz+zt+ty\right)}+\dfrac{xzt}{y^2\left(xz+zt+tx\right)}+\dfrac{xyt}{z^2\left(xy+yt+tx\right)}+\dfrac{xyz}{t^2\left(xy+yz+zx\right)}\ge3\left(yzt+xzt+xyt+xyz\right)=3yzt+3xzt+3xyt+3xyz\)
Ta sẽ chứng minh:
\(\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\ge3yzt\). Cộng theo vế rồi suy ra đpcm
T gần đi học r,có gì tối về giải full cho
Ta có: \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)
\(VT=\dfrac{x}{1+yz}+\dfrac{y}{1+xz}+\dfrac{z}{1+xy}\)
\(=\dfrac{x^2}{x+xyz}+\dfrac{y^2}{y+xyz}+\dfrac{z^2}{z+xyz}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3xyz}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\dfrac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}}\)
\(=\dfrac{3\left(x+y+z\right)}{4}\). Cần chứng minh:
\(\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{3\sqrt{3}}{4}\Leftrightarrow x+y+z\ge\sqrt{3}\)
BĐT cuối đúng vì \(x+y+z\ge\sqrt{3\left(xy+yz+xz\right)}=\sqrt{3}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
Ps: nospoiler
Áp dụng BĐT Cauchy, ta có:
\(VT\ge3\sqrt[3]{\dfrac{x^2.y^2.z^2}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=3\sqrt[3]{\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
Ta có: xyz=1 và x,y,z >0
\(\Rightarrow x\le1\Rightarrow x+1\le2\Rightarrow\dfrac{1}{x+1}\ge\dfrac{1}{2}\)
Tương tự \(\dfrac{1}{y+1}\ge\dfrac{1}{2}\)
\(\dfrac{1}{z+1}\ge\dfrac{1}{2}\)
\(\Rightarrow VT\ge3\sqrt[3]{\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi x=y=z=1
WLOG \(x\ge y \ge z\)
Áp dụng BĐT AM-GM và BĐT Rearrangement ta có:
\(VT=\dfrac{x+1}{y+1}+\dfrac{y+1}{z+1}+\dfrac{z+1}{x+1}\)
\(=\dfrac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+xz^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\le\dfrac{21+xy^2+yz^2+xz^2}{xy+yz+xz+4}\)\(\le\dfrac{21+x^2y+xyz+yz^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)
\(\le\dfrac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)\(\le\dfrac{21+\dfrac{\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)
\(=\dfrac{21+4}{3\sqrt[3]{4\left(xy+yz+xz\right)}}=\dfrac{25}{3\sqrt[3]{4\left(xy+yz+xz\right)}}=VP\)
Dấu "=" khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và h.vị
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
\(BĐT\Leftrightarrow\dfrac{x}{y^3}+\dfrac{y}{z^3}+\dfrac{z}{x^3}\ge x+y+z\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Rightarrow abc\ge1\)
\(BĐT\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\dfrac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)
Ta có \(abc\ge1\)
\(\Rightarrow\left\{{}\begin{matrix}bc\ge\dfrac{1}{a}\\ab\ge\dfrac{1}{c}\\ac\ge\dfrac{1}{b}\end{matrix}\right.\Rightarrow bc+ac+ab\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)
\(\Leftrightarrow\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\ge0\)
1. Theo BĐT AM - GM, ta có:
\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)
Do đó BĐT ban đầu sẽ đúng nếu ta C/m được
\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)
Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)
( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )
Điều kiện là với mọi ab\(\ge1\) mà bác,
@Mẫn Đan http://2.pik.vn/201774c00a9b-7ce0-4609-ba96-a2030bb1341b.png
P/S: Lười làm :D, send tham khảo
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow VT\ge3\sqrt[3]{\dfrac{1}{\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)}}=\dfrac{3}{\sqrt[3]{\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)}}\)
Chứng minh rằng \(\dfrac{3}{\sqrt[3]{\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)}}\ge\dfrac{3}{1+xyz}\)
\(\Leftrightarrow\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)\le\left(1+xyz\right)^3\)
Áp dụng bất đẳng thức Holder
\(\Rightarrow\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)\ge\left(1+xyz\right)^3\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=1\)