K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

WLOG \(x\ge y \ge z\)

Áp dụng BĐT AM-GM và BĐT Rearrangement ta có:

\(VT=\dfrac{x+1}{y+1}+\dfrac{y+1}{z+1}+\dfrac{z+1}{x+1}\)

\(=\dfrac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+xz^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\le\dfrac{21+xy^2+yz^2+xz^2}{xy+yz+xz+4}\)\(\le\dfrac{21+x^2y+xyz+yz^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)

\(\le\dfrac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)\(\le\dfrac{21+\dfrac{\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)

\(=\dfrac{21+4}{3\sqrt[3]{4\left(xy+yz+xz\right)}}=\dfrac{25}{3\sqrt[3]{4\left(xy+yz+xz\right)}}=VP\)

Dấu "=" khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và h.vị

24 tháng 8 2018

ai fix cho em xz^2 thanh x^2z voi a >...<