Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho P=(x+y).(y+z).(z+x)+xyz
CM nếu x,y,z thuộc Z và x+y+z chia hết cho 6 thì Q=P-3xyz chia hết cho 6
Lời giải:
Biến đổi:
\(P=(x+y)(y+z)(x+z)+xyz=xy(x+y)+yz(y+z)+xz(z+x)+3xyz\)
\(\Leftrightarrow P=(x+y+z)(xy+yz+xz)\)
Với \(x+y+z\vdots 6\Rightarrow P\vdots 6(1)\)
Giả sử \(x,y,z\) đều là các số nguyên lẻ, khi đó \(x+y+z\) lẻ thì không thể chia hết cho $6$ (vô lý)
Do đó , phải tồn tại ít nhất một trong ba số \(x,y,z\) là số chẵn
\(\Rightarrow 3xyz\vdots 6(2)\)
Từ \((1),(2)\Rightarrow Q=P-3xyz\vdots 6\)
Ta có đpcm
xy( x+ y) + yz(y+z) + xz(x+z) + 3xyz
= xy(x+y) + xyz + yz(y+z) + xyz + xz(x+z) + xyz
= zy(x+y+z) + yz(x + y + z) + xz ( x+y+z)
= ( x+ y +z )( xy + yz + zx)
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)
\(x^3+y^3+z^3=3xyz\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
+, \(x+y+z=0\)
\(\Rightarrow x+y=-z;x+z=-y;y+z=-x\)
\(\Rightarrow P=\frac{xyz}{-xyz}=-1\)
+, \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow P=\frac{x^3}{2x\cdot2x\cdot2x}=\frac{1}{8}\)
\(P=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
\(=\left(xy+xz+y^2+yz\right)\left(z+x\right)+xyz\)
\(=xyz+x^2y+xz^2+x^2z+y^2z+xy^2+yz^2+xyz+xyz\)
\(=\left(xyz+x^2y+x^2z\right)+\left(xyz+xy^2+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)\)
Mà \(x+y+z=20042004⋮6\)
=>\(P⋮6\)
Lại có; \(x+y+z⋮6\) nên trong 3 số phải có ít nhất 1 số chẵn
=>\(xyz⋮2\Rightarrow3xyz⋮6\)
=>\(P-3xyz⋮6\) (đpcm)