\(P=x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:

Áp dụng BĐT Cô-si:

\(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\)

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\geq \frac{1}{3}.(\frac{9}{x+y+z})^2=\frac{27}{(x+y+z)^2}\)

\(\Rightarrow P\geq \frac{(x+y+z)^2}{3}+\frac{27}{(x+y+z)^2}\)

Áp dụng BĐT Cô-si:

\(\frac{(x+y+z)^2}{3}+\frac{1}{3(x+y+z)^2}\geq \frac{2}{3}\)

\(\frac{80}{3(x+y+z)^2}\geq \frac{80}{3}\)

\(\Rightarrow P\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}\)

Vậy $P_{\min}=\frac{82}{3}$ khi $x=y=z=\frac{1}{3}$

5 tháng 9 2017

điều kiện có thiếu ko vậy

5 tháng 9 2017

à mk vt nhầm để mk sửa

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

6 tháng 5 2017

Theo đề thì:\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)

\(\Leftrightarrow xz+yz-2xy=0\)

Cũng từ \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)

\(\Leftrightarrow\dfrac{2}{z}=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\)

\(\Leftrightarrow z\le\sqrt{xy}\)

\(\Leftrightarrow z^2\le xy\)

Quay lại bài toán ta có:

\(T=\dfrac{x+z}{2x-z}+\dfrac{z+y}{2y-z}=\dfrac{2z^2-6xy-\left(xz+yz-2xy\right)}{-z^2+2\left(xz+yz-2xy\right)}\)

\(=\dfrac{6xy-2z^2}{z^2}\ge\dfrac{6xy-2xy}{xy}=4\)

Vậy GTNN là T = 4 khi x = y = z = 1

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

25 tháng 10 2018

Nesbit:v dài

25 tháng 10 2018

Nham ko phai Nesbit, Cauchy-Schwarz ra luon