\(x^4+y^4=2\) CMR \(\dfrac{x^2}{y}+\dfrac{y^2}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Áp dụng BĐT Cauchy , ta có :

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)

\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)


AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

25 tháng 10 2018

Nesbit:v dài

25 tháng 10 2018

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

26 tháng 6 2018

Bài 1:

Áp dụng bđt Schwarz:

\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

dấu "=" xảy ra khi \(\dfrac{x^2}{x^2+2yz}=\dfrac{y^2}{y^2+2xz}=\dfrac{z^2}{z^2+2xy}=\dfrac{1}{3}\Leftrightarrow x=y=z=1\)

vậy P đạt GTNN bằng 1 <=> x=y=z=1

Bài 2:

\(x\ge4\Rightarrow\left\{{}\begin{matrix}x^2\ge16\left(1\right)\\\dfrac{18}{\sqrt{x}}\ge9\left(2\right)\end{matrix}\right.\)

cộng theo vế (1) và (2), ta được: \(x^2+\dfrac{18}{\sqrt{x}}\ge25\) hay \(S\ge25\left(đpcm\right)\)