Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le x,y,z\le1\Rightarrow x^{10}\le x;y^6\le y;z^{2016}\le z;0\le xyz\le1\)
CÓ: \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)
=>\(1-xyz+\left(xy+yz+zx\right)-\left(x+y+z\right)\ge0\)
=>\(x+y+z-xy-yz-zx-xyz\le1\)
=>\(x^{10}+y^6+z^{2016}-xy-yz-zx\le1\)
Dấy "=" xảy ra <=> trong 3 số x,y,z có 1 số bằng 0, 2 số bằng 1 hoặc 1 số bằng 1, 2 số bằng 0
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14
có phưong pháp nào ko
nếu có thì bn giúp mk vs nhé
Hãy tích nếu như bạn thông minh
Ai ko tích là bình thường
Còn ai dis là "..."
Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)
\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)
Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\); \(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)
Cộng lại,ta được :
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )
Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )
Dấu "=" xảy ra khi x = y = z = 1
Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1
Vậy ...
\(P=\left|x\right|+\left|y\right|+\left|z\right|\)
Không mất tính tổng quát giả sử \(x\le y\le z\).
Khi đó \(x\le0;z\ge0\).
+) Nếu \(y\geq 0\) thì \(P=z-x+y=z-x-x-z=-2x\le2\).
+) Nếu \(y< 0\) thì \(P=z-x-y=z-x+z+x=2z\le2\).
Tóm lại \(P\le2\). Đẳng thức xảy ra khi, chẳng hạn x = -1; y = 0; z = 1.
Vậy Max P = 2 khi x = -1; y = 0; z = 1.
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)