\(x^3+x^2z+y^2z-xyz+y^3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(x^3+x^2z+y^2z-xyz+y^3\)

\(=x^3+y^3+x^2z+y^2z-xyz\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2+y^2-xy\right)\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

\(=0\left(x^2-xy+y^2\right)\)

\(=0\left(ĐPCM\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

Ta có:

\(x^3+x^2z+y^2z-xyz+y^3=(x^3+y^3)+(x^2z+y^2z-xyz)\)

\(=(x+y)(x^2-xy+y^2)+z(x^2+y^2-xy)\)

\(=(x^2-xy+y^2)(x+y+z)=(x^2-xy+y^2).0=0\)

Ta có đpcm.

Câu a : Ta có : \(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\) ( đpcm )

Câu b : \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a+b+c=0\) ( đúng )

a: x-y-z=0

=>x=y+z; y=x-z; z=x-y

\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)

b: Tham khảo:

undefined

Đặt \(^{\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\Rightarrow abc=1}\)

\(\Rightarrow P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

ÁP DỤNG BĐT AM-GM : 

\(a^2+b^2\ge2ab\)

\(b^2+1\ge2b\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}\)

Tương tự \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1}\)

               \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

Cộng từng vế các bđt trên ta được

\(P\le\frac{1}{2}\)

Dấu "=" xảy ra khi x=y=z=1

28 tháng 9 2016

Nếu\(a^3+b^3+c^3=3abc\Rightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Thật vậy:\(a+b+c=0\Rightarrow a+b=-c\\ \Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3+c^3=3abc\)

Tương tự \(a=b=c\Rightarrow\orbr{\begin{cases}3abc=3a^3\\a^3+b^3+c^3=3a^3\end{cases}\Rightarrow a^3+b^3+c^3=3abc}\)

Áp dụng ta có:\(\orbr{\begin{cases}xy+yz+zx=0\\xy=yz=zx\Rightarrow x=y=z\end{cases}}\)

Khi x=y=z,ta có P=(1+1)(1+1)(1+1)=8

Khi xy+yz+zx=0,ta có:\(xy+yz=-zx\)

Tương tự:\(yz+zx=-xy\)

               \(xy+zx=-yz\)

Ta có \(P=2+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}=2+\frac{xz+yz}{z^2}+\frac{xy+xz}{x^2}+\frac{zy+xy}{y^2}\)\(=2-\left(\frac{z}{x}+\frac{x}{y}+\frac{y}{z}\right)\)\(=2-\frac{xy+yz+zx}{xyz}=2-\frac{0}{xyz}=2\)

Vậy P=8 khi x=y=z

      P=2 khi xy+yz+zx=0

28 tháng 9 2016

kho nhi

10 tháng 12 2017

bạn ơi hình như có chút sai đề