\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)

tính <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2020

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Vậy P có thể nhận các giá trị \(P=\left\{-1;1;3\right\}\)

10 tháng 9 2017

1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)

\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)

\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)

\(=\frac{1+x+xy}{1+x+xy}=1\)

Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)

13 tháng 9 2017

đề b2 sai

24 tháng 3 2019

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)

\(\Rightarrow\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

\(\Rightarrow M=2019+0=2019\)

13 tháng 4 2019

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{xy}{z+x}+\frac{zx}{x+y}+\frac{xy}{y+z}+\frac{y^2}{z+x}+\frac{yz}{x+y}+\frac{zx}{y+z}+\frac{yz}{z+x}+\frac{z^2}{x+y}=x+y+z\)

\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+yz}{z+x}\right)+\left(\frac{yz+zx}{x+y}\right)+\left(\frac{zx+xy}{y+z}\right)=x+y+z\)

\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{y\left(z+x\right)}{z+x}+\frac{z\left(x+y\right)}{x+y}+\frac{x\left(y+z\right)}{y+z}=x+y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+x+y+z=x+y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

\(\Rightarrow M=2019\)

30 tháng 10 2019

1)

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

Từ $xyz=1$ suy ra:

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=yz+xz+xy\)

\(\Leftrightarrow xy+yz+xz-x-y-z=0\)

\(\Leftrightarrow (xy-x-y+1)+yz+xz-z-1=0\)

\(\Leftrightarrow (x-1)(y-1)+yz+xz-z-xyz=0\)

\(\Leftrightarrow (x-1)(y-1)+z(y-1)-xz(y-1)=0\)

\(\Leftrightarrow (y-1)(x-1+z-xz)=0\)

\(\Leftrightarrow (y-1)[(x-1)-z(x-1)]=0\Leftrightarrow (y-1)(x-1)(1-z)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ y=1\\ z=1\end{matrix}\right.\)

Nếu $x=1\Rightarrow yz=1$

$A=x^{2018}+2019^y-z^x=1+2019^y-z=1+2019^y-\frac{1}{y}$

Nếu $y=1\Rightarrow xz=1$

$A=x^{2018}+2019-z^x=x^{2018}+2019-\frac{1}{x^x}$

Nếu $z=1\Rightarrow xy=1$

$A=\frac{1}{y^{2018}}+2019^y-1$

Tóm lại với đkđb vẫn chưa tính được giá trị cụ thể của $A$

20 tháng 4 2017

bài 1 ta có x+y+z=0 suy ra y+z=-x 

(-x)2=x2=(y+z)2=y2+2yz+z2

suy ra 

\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)

tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)

bài 2 bạn ghi đề không rõ ràng nên mình không giải

21 tháng 4 2017

Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)

30 tháng 7 2019

hơi dài mà lười nên mình nói cách làm nha :P

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)

bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)

tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự 

quy đồng rồi tính ra = 0 là được 

29 tháng 1 2017

cần c/m : nếu x+y+z=0 thì x3+y3+z3=3xyz 

rồi áp dụng vô tính K=[xyz(1/x3+1/y3+1/z3)-2]2017=(3-2)2017=1