K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

\(x+y+z=0\)

\(-x=y+z\)

\(x^2=\left(y+z\right)^2\) 

\(x^2=y^2+2yz+z^2\) 

\(y^2+z^2-x^2=-2yz\)

Tương tự:

\(z^2+x^2-y^2=-2zx\)

\(x^2+y^2-z^2=-2xy\)

➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\) 

Vậy S = 0

30 tháng 8 2019

Ta có:

\(x+y+z=0\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)

Vậy S=0

Ta có:\(x^2+4y+4=0;y^2+4z+4=0;z^2+4x+4=0\)

\(\Leftrightarrow\left(x^2+4y+4\right)+\left(y^2+4z+4\right)+\left(z^2+4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4+y^2+4y+4+z^2+4z+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2=0\)

\(\left(x+2\right)^2\ge0;\left(y+2\right)^2\ge0;\left(z+2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)

Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x+2=0\\y+2=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\\z=-2\end{cases}\Leftrightarrow}x=y=z=-2}\)

Vậy\(x^{10}+y^{10}+z^{10}=x^{10}+x^{10}+x^{10}\)                         

                    \(=3\cdot x^{10}=3\cdot\left(-2\right)^{10}=3\cdot1024=3072\)

30 tháng 7 2019

hơi dài mà lười nên mình nói cách làm nha :P

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)

bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)

tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự 

quy đồng rồi tính ra = 0 là được 

5 tháng 8 2016

1/x+1/y-1/z=(yz+xz-xy)/(xyz)=0 vì x,y,z#0 =>yz+xz-xy=0

x^2 + y^2 +z^2=(x+y-z)^2 +2(xz+yz-xy)=4

28 tháng 8 2019

1/x + 1/y + 1/z = 13

<=> yz/x + xy/z + zx/y = 13

<=> xyz/x^2 + xyz/y^2 + xyz/z^2 = 13

<=> (x+y+z)(1/x^2 + 1/y^2 + 1/z^2) = 13

<=> 1/x^2 + 1/y^2 + 1/z^2 = 13/(x+y+z)

Hết ra rồi