Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2019xz}{xyz+2019xz+2019z}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{2019xz}{2019+2019xz+2019z}+\frac{y}{y\left(xz+z+1\right)}+\frac{z}{xz+z+1}\)
\(\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=1\)
Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)
\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)
Vậy A = 2019
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
Ta có: \(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=x+y+z\)
TH1: \(x+y+z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{x+y+z}{x+y-3+y+z+1+z+x+2}\)
\(=\frac{x+y+z}{x+y+y+z+z+x}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{2}-z\)
\(y+z=\frac{1}{2}-x\)
\(z+x=\frac{1}{2}-y\)
Thay \(x+y-3=\frac{1}{2}-z-3\)
\(\Rightarrow\frac{z}{\frac{1}{2}-z+3}=\frac{1}{2}\)
\(\Rightarrow2z=\frac{1}{2}-z-3\)
\(\Rightarrow2z+z=\frac{1}{2}-3\)
\(\Rightarrow3z=-\frac{5}{2}\Rightarrow z=-\frac{5}{6}\)
Thay \(y+z+1=\frac{1}{2}-x+1\)
\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\)
\(\Rightarrow2x=\frac{1}{2}-x+1\)
\(\Rightarrow2x+x=\frac{1}{2}+1\)
\(\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(z+x+2=\frac{1}{2}-y+2\)
\(\Rightarrow\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2}\)
\(\Rightarrow2y=\frac{1}{2}-y+2\)
\(\Rightarrow2y+y=\frac{1}{2}+2\)
\(\Rightarrow3y=\frac{5}{2}\Rightarrow y=\frac{5}{6}\)
Ta có: \(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)
\(=\left(\frac{1}{2}+\frac{5}{6}+-\frac{5}{6}-\frac{3}{2}\right)^{2019}\)
\(=\left[\left(\frac{1}{2}-\frac{3}{2}\right)+\left(-\frac{5}{6}+\frac{5}{6}\right)\right]^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
TH2: x + y + z = 0
\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=0\)
\(\Rightarrow x=y=z=0\)
\(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)
\(=\left(0-\frac{3}{2}\right)^{2019}=\left(-\frac{3}{2}\right)^{2019}\)
Ah! Mk nhầm chút. TH1 là khác 0 nhé!!!!!!
\(2019-\left|x-2019\right|=x\)
\(\Leftrightarrow\left|x-2019\right|=2019-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2019-x=x-2019\\2019-x=2019-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4038\\0x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=0\end{matrix}\right.\)
Vậy \(x=2019;x=0\)
\(a)\)\(2019-\left|x-2019\right|=x\)
\(\Leftrightarrow-\left|x-2019\right|-x=-2019\)
TH1: \(x-2019\ge0\Rightarrow x\ge2019\)
\(-\left(x-2019\right)-x=-2019\\ \Leftrightarrow-x+2019-x=-2019\\ \Leftrightarrow-x-x=-2019-2019\\ \Leftrightarrow-2x=-4038\\ \Leftrightarrow x=2019\left(TM\right)\)
TH2: \(x-2019< 0\Rightarrow x< 2019\)
\(-\left[-\left(x-2019\right)\right]-x=-2019\\ \Leftrightarrow x-2019-x=-2019\\ \Leftrightarrow x-x=-2019+2019\\ \Leftrightarrow0x=0\left(VSN\right)\)
Vậy ......
xin loi , may tinh minh hong unikey
Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)
Suy ra \(x=2017k;y=2018k;z=2019k\)
Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)
\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\left(1\right)\)
\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y=z\)
Thay y, z bằng x \(\Rightarrow M=\frac{3.x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)