\(\frac{x^{2019}+y^{2019}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\left(1\right)\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow x=y=z\)

Thay y, z bằng x \(\Rightarrow M=\frac{3.x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)

NV
4 tháng 3 2020

\(P=\frac{2019xz}{xyz+2019xz+2019z}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{2019xz}{2019+2019xz+2019z}+\frac{y}{y\left(xz+z+1\right)}+\frac{z}{xz+z+1}\)

\(\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=1\)

11 tháng 3 2020

Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)

\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)

Vậy A = 2019

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

Ta có: \(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=x+y+z\)

TH1: \(x+y+z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{x+y+z}{x+y-3+y+z+1+z+x+2}\)

                       \(=\frac{x+y+z}{x+y+y+z+z+x}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow x+y=\frac{1}{2}-z\)

      \(y+z=\frac{1}{2}-x\)

      \(z+x=\frac{1}{2}-y\)

Thay \(x+y-3=\frac{1}{2}-z-3\)

\(\Rightarrow\frac{z}{\frac{1}{2}-z+3}=\frac{1}{2}\)

\(\Rightarrow2z=\frac{1}{2}-z-3\)

\(\Rightarrow2z+z=\frac{1}{2}-3\)

\(\Rightarrow3z=-\frac{5}{2}\Rightarrow z=-\frac{5}{6}\)

Thay \(y+z+1=\frac{1}{2}-x+1\)

\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\)

\(\Rightarrow2x=\frac{1}{2}-x+1\)

\(\Rightarrow2x+x=\frac{1}{2}+1\)

\(\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)

Thay \(z+x+2=\frac{1}{2}-y+2\)

\(\Rightarrow\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2}\)

\(\Rightarrow2y=\frac{1}{2}-y+2\)

\(\Rightarrow2y+y=\frac{1}{2}+2\)

\(\Rightarrow3y=\frac{5}{2}\Rightarrow y=\frac{5}{6}\)

Ta có: \(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)

                \(=\left(\frac{1}{2}+\frac{5}{6}+-\frac{5}{6}-\frac{3}{2}\right)^{2019}\)

                \(=\left[\left(\frac{1}{2}-\frac{3}{2}\right)+\left(-\frac{5}{6}+\frac{5}{6}\right)\right]^{2019}\)

                 \(=\left(-1\right)^{2019}=-1\)

TH2: x + y + z = 0

\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=0\)

\(\Rightarrow x=y=z=0\)

\(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)

    \(=\left(0-\frac{3}{2}\right)^{2019}=\left(-\frac{3}{2}\right)^{2019}\)

Ah! Mk nhầm chút. TH1 là khác 0 nhé!!!!!!

1 tháng 2 2019

\(2019-\left|x-2019\right|=x\)

\(\Leftrightarrow\left|x-2019\right|=2019-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2019-x=x-2019\\2019-x=2019-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4038\\0x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=0\end{matrix}\right.\)

Vậy \(x=2019;x=0\)

1 tháng 2 2019

\(a)\)\(2019-\left|x-2019\right|=x\)

\(\Leftrightarrow-\left|x-2019\right|-x=-2019\)

TH1: \(x-2019\ge0\Rightarrow x\ge2019\)

\(-\left(x-2019\right)-x=-2019\\ \Leftrightarrow-x+2019-x=-2019\\ \Leftrightarrow-x-x=-2019-2019\\ \Leftrightarrow-2x=-4038\\ \Leftrightarrow x=2019\left(TM\right)\)

TH2: \(x-2019< 0\Rightarrow x< 2019\)

\(-\left[-\left(x-2019\right)\right]-x=-2019\\ \Leftrightarrow x-2019-x=-2019\\ \Leftrightarrow x-x=-2019+2019\\ \Leftrightarrow0x=0\left(VSN\right)\)

Vậy ......

4 tháng 1 2018

xin loi , may tinh minh hong unikey

Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)

Suy ra \(x=2017k;y=2018k;z=2019k\)

Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)