Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)
a)
\(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy \(x\le2009\)
b)
Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)
\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)
Mà theo đề bài :
\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)
*) Với \(\left(2x+1\right)^{2008}=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
*) Với \(\left|x+y-z\right|=0\)
\(\Rightarrow x+y-z=0\)
\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)
\(\Rightarrow\dfrac{-1}{10}-z=0\)
\(\Rightarrow z=\dfrac{-1}{10}\)
Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)
a, 2009 - \(\left|x-2009\right|\) = x
=> \(\left|x-2009\right|\) = 2009 - x
=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)
Vậy x \(\in\)n { 2009 ; 0 }
a: \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
nên \(\left\{{}\begin{matrix}2x-1=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=x+y=\dfrac{9}{10}\end{matrix}\right.\)
b: Bạn xem lại đề, nghiệm rất xấu
1. a) \(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=2009-x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy \(x\le2009.\)
b) Ta có: \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x,y,z\end{matrix}\right.\) \(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)
Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\).
Bạn kia làm câu 1 rồi thì mình làm câu 2 nhé!
2. Ta có:\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)
\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{5b-3c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{15a-10b+6c-15a}{25+9}\)=\(\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)
\(\Rightarrow\dfrac{-5b+3c}{17}=\dfrac{5b-3c}{2}\Rightarrow5b-3c=0\)
=> 5b=3c =>\(\left\{{}\begin{matrix}b=\dfrac{3}{5}c\\a=\dfrac{2}{5}c\end{matrix}\right.\)
=>\(\dfrac{3}{5}c+\dfrac{2}{5}c+c=-50\)
=> \(c\left(\dfrac{3}{5}+\dfrac{2}{5}+1\right)=-50\)
=> 2c = -50
=> c= -25
=>\(\left\{{}\begin{matrix}b=-25.\dfrac{3}{5}=-15\\a=-25.\dfrac{2}{5}=-10\end{matrix}\right.\)
Vậy a= -10; b= -15; c= -25
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
a) \(2009-\left|x-2009\right|=x\)
* Nếu \(x-2009\ge0\Rightarrow x\ge2009\)
\(2009-\left(x-2009\right)=x\)
\(2009-x+2009=x\)
\(4018=2x\)
\(x=2009\)(TMĐK)
* Nếu \(x-2009< 0\Rightarrow x< 2009\)
\(2009-\left[-\left(x-2009\right)\right]=x\)
\(2009-\left(-x+2009\right)=x\)
\(2009+x-2009=x\)
\(0x=0\)
Nên \(x\in R\) trừ \(x< 2009\)
Vậy .......
Vi 8x = 5y , 7y = 12z
=>\(\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{8}\\\dfrac{y}{12}=\dfrac{z}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{60}=\dfrac{y}{96}\\\dfrac{y}{96}=\dfrac{z}{56}\end{matrix}\right.\)
=> \(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}\)
Ap dung tinh chat day ti so bang nhau co
\(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}=\dfrac{x+y+z}{60+96+56}=\dfrac{-318}{212}=\dfrac{-3}{2}\)
\(\dfrac{x}{60}=\dfrac{-3}{2}\Rightarrow x=60.\dfrac{-3}{2}=-90\)
\(\dfrac{y}{96}=\dfrac{-3}{2}\Rightarrow y=96.\dfrac{-3}{2}=-144\)
\(\dfrac{z}{56}=\dfrac{-3}{2}\Rightarrow z=56.\dfrac{-3}{2}=-84\)
Vay x= -90, y= -144 va z=-84
c: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
d: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=9/10
a: 8x=5y; 7y=12z
=>x/5=y/8; y/12=z/7
=>x/15=y/24=z/14
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{14}=\dfrac{x+y+z}{15+24+14}=-\dfrac{318}{53}=-6\)
=>x=-90; y=-144; z=-84
Ta luôn có :|x-2009|\(\ge\)0(1)
Mà :2009-|x-2009|=x nên 2009\(\ge\)x(2)
Vì (1)và(2) nên ta có x \(\in\){0;1;2;3;4;5;...;2009}
(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0
=> ( 2x - 1) 2008 =0 => 2x - 1 =0 => 2x = 1 => x = 1/2
( y - 2/5 )2008 = 0 y - 2/5 = 0 y =2/5 y = 2/5
|x + y -z | = 0 x + y - z = 0 x + 2/5 - z = 0 1/2 - 2/5 -z = 0
=>x = 1/2 =>x = 1/2
y = 2/5 y = 2/5
5/10 - 4/10 = z z = 1/ 10
Vậy x = 1/2 ; y = 2/5 : z = 1/10
( nhớ cho mk nha )
ta có: \(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y-z\right|\ge0\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)
để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)
\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)
KL: x= 1/2; y= 2/5; z=9/10
( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)
\(2019-\left|x-2019\right|=x\)
\(\Leftrightarrow\left|x-2019\right|=2019-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2019-x=x-2019\\2019-x=2019-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4038\\0x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=0\end{matrix}\right.\)
Vậy \(x=2019;x=0\)
\(a)\)\(2019-\left|x-2019\right|=x\)
\(\Leftrightarrow-\left|x-2019\right|-x=-2019\)
TH1: \(x-2019\ge0\Rightarrow x\ge2019\)
\(-\left(x-2019\right)-x=-2019\\ \Leftrightarrow-x+2019-x=-2019\\ \Leftrightarrow-x-x=-2019-2019\\ \Leftrightarrow-2x=-4038\\ \Leftrightarrow x=2019\left(TM\right)\)
TH2: \(x-2019< 0\Rightarrow x< 2019\)
\(-\left[-\left(x-2019\right)\right]-x=-2019\\ \Leftrightarrow x-2019-x=-2019\\ \Leftrightarrow x-x=-2019+2019\\ \Leftrightarrow0x=0\left(VSN\right)\)
Vậy ......