Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x+y)(z-x)=(x+z)(x-y)
x(z-x)+y(z-x)=x(x-y)+z(x-y)
zx-x^2+yz-xy=x^2-xy+zx-yz
(yz+yz)+(zx-zx)=(x^2+x^2)-(xy-xy)
2yz=2x^2
=>yz=x^2
nên x^2-yz=0
Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:
\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)
\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)
\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
\(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)
Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\)
\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)
\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)
\(\Rightarrow P\ge3\)
Vậy \(P_{min}=3\)
Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Ta có :
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)
\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)
Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)
Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)
Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)
Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)