Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{S}{2\sqrt{3}}=\dfrac{x}{2\sqrt{3x\left(2y+2z-x\right)}}+\dfrac{y}{2\sqrt{3y\left(2x+2z-y\right)}}+\dfrac{z}{2\sqrt{3z\left(2x+2y-z\right)}}\)
\(\dfrac{S}{2\sqrt{3}}\ge\dfrac{x}{3x+2y+2z-x}+\dfrac{y}{3x+2x+2z-y}+\dfrac{z}{3z+2x+2y-z}=\dfrac{1}{2}\)
\(\Rightarrow S\ge\sqrt{3}\)
\(S_{min}=\sqrt{3}\) khi \(x=y=z\)
\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)
=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)
=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)
Dấu = xảy ra khi x=y=z=6căn 2
Xét \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
\(\Leftrightarrow1=\left(1-\dfrac{1}{x}\right)+\left(1-\dfrac{1}{y}\right)+\left(1-\dfrac{1}{z}\right)\)
\(\Leftrightarrow1=\dfrac{x-1}{x}+\dfrac{y-1}{y}+\dfrac{z-1}{z}\)
Áp dụng bđt Bunhiacopxki có:
\(x+y+z=\left(x+y+z\right)\left(\dfrac{x-1}{x}+\dfrac{y-1}{y}+\dfrac{z-1}{1}\right)\ge\left(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\right)^2\)\(\Leftrightarrow\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Dấu "=" xảy ra khi x=y=z=1,5Tự đăng câu hỏi xong tự trả lời (T-T)
a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)
\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)
\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).
Dấu bằng xảy ra\(\Leftrightarrow x=y\).
Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).
Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)
Lúc đó:
\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)
\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)
Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)
Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)
\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)
\(\Leftrightarrow A=B\)
Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)
Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)
\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow x=y\)
Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:
\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)
Chứng minh tương tự, ta được:
\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)
Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)
\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)
Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)
Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:
\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)
\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)
\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)
Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)
\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)
Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)
Hoàn toàn tương tự:
\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)
Cộng theo vế các BĐT đã thu được ta có:
\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=3\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+y-z}\\b=\sqrt{y+z-x}\\c=\sqrt{z+x-y}\end{matrix}\right.\). Vì x,y,z là độ dài 3 cạnh của tam giác nên a,b,c luôn có nghĩa.
\(\Rightarrow\left\{{}\begin{matrix}a^2=x+y-z\\b^2=y+z-x\\c^2=z+x-y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{c^2+a^2}{2}\\y=\dfrac{a^2+b^2}{2}\\z=\dfrac{b^2+c^2}{2}\end{matrix}\right.\)
Bất đẳng thức cần chứng minh trở thành:
\(\dfrac{c^2+a^2}{2a}+\dfrac{a^2+b^2}{2b}+\dfrac{b^2+c^2}{2c}\ge\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\)
Theo BĐT Bunhiacopxki ta có:
\(\left(\dfrac{c^2+a^2}{2a}+\dfrac{a^2+b^2}{2b}+\dfrac{b^2+c^2}{2c}\right)\left(a+b+c\right)\ge\left(\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\right)^2\)
\(\Rightarrow\dfrac{c^2+a^2}{2a}+\dfrac{a^2+b^2}{2b}+\dfrac{b^2+c^2}{2c}\ge\dfrac{\left(\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\right)^2}{a+b+c}\)Ta chỉ cần chứng minh BĐT sau là bài toán đc giải quyết:
\(\dfrac{\left(\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\right)^2}{a+b+c}\ge\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\)
\(\Leftrightarrow\sqrt{\dfrac{c^2+a^2}{2}}+\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{\dfrac{b^2+c^2}{2}}\ge a+b+c\left(1\right)\)
Ta có BĐT: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)
\(\Rightarrow\sqrt{\dfrac{a^2+b^2}{2}}\ge\dfrac{a+b}{2}\)
Tương tự: \(\left\{{}\begin{matrix}\sqrt{\dfrac{b^2+c^2}{2}}\ge\dfrac{b+c}{2}\\\sqrt{\dfrac{c^2+a^2}{2}}\ge\dfrac{c+a}{2}\end{matrix}\right.\)
Cộng vế theo vế của các BĐT trên ta có BĐT (1) đúng.
\(\Rightarrowđpcm\). Dấu "=" xảy ra khi \(x=y=z\)