K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)(x+y+z)\geq \left(\sqrt{\frac{1}{16}}+\sqrt{\frac{1}{4}}+\sqrt{1}\right)^2\)

\(\Leftrightarrow P(x+y+z)\geq \frac{49}{16}\)

\(\Leftrightarrow P\geq \frac{49}{16}\) (do \(x+y+z=1\) )

Vậy \(P_{\min}=\frac{49}{16}\) tại \((x,y,z)=(\frac{1}{7}; \frac{2}{7}; \frac{4}{7})\)

19 tháng 3 2017

Ta có:

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu bằng xảy ra khi  

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)  

19 tháng 3 2017

hahaha hoa tọa cx phải dj hỏi hả

12 tháng 4 2018

Áp dụng BĐT Shwarz:

\(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}\)

\(\ge\dfrac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\dfrac{49}{16}\)

Dấu " = " khi \(\dfrac{1}{16x}=\dfrac{2}{16y}=\dfrac{4}{16z}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)

Vậy...

12 tháng 4 2018

Nguyễn Huy Tú lâu quá k thấy on

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

7 tháng 3 2021

Áp dụng bđt phụ \(\dfrac{1}{A+B}\le\dfrac{1}{4}\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\forall A,B>0\)

\(\dfrac{1}{2x+y+z}=\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\) Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=1\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Này Nguyễn Trọng Chiến, mk ko hiểu cái chỗ \(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\)??? Sao suy ra được vậy bn??

NV
7 tháng 3 2021

\(\dfrac{1}{x+x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Mk ko hiểu cái dòng đầu Nguyễn Việt Lâm Giáo viên, bn có thể nói chi tiết cách phân tích cho mk đc ko??

18 tháng 8 2018

Ta có : \(P=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\)( Vì \(x+y+z=1\) )

Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :

\(\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{4\sqrt{x}}+\sqrt{y}.\dfrac{1}{2\sqrt{y}}+\sqrt{z}.\dfrac{1}{\sqrt{z}}\right)^2=\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2=\dfrac{49}{16}\)

Dấu \("="\) xảy ra khi \(x=\dfrac{1}{7}\) ; \(y=\dfrac{2}{7}\) ; \(z=\dfrac{4}{7}\)

18 tháng 8 2018

Hỏi đáp Toán

nếu không hiểu hỏi lại mình nhé!!!

NV
17 tháng 2 2019

\(M=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{16}{z}\right)=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2^2}{y}+\dfrac{4^2}{z}\right)\)

\(\Rightarrow M\ge\dfrac{1}{16}\dfrac{\left(1+2+4\right)^2}{x+y+z}=\dfrac{1}{16}.\dfrac{49}{1}=\dfrac{49}{16}\)

\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x+y+z=1\\\dfrac{1}{x}=\dfrac{2}{y}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)

30 tháng 11 2018

Mạnh ê,tôi vào đc nixk này rồi hehe

30 tháng 11 2018

Duy thoát ra ngay đi

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

13 tháng 3 2021

Thầy ơi, nhưng câu này là đề thi huyện chỗ em á thầy, em cũng chả biết làm sao nữa, chả nhẽ đề thi huyện lại sai:"(