Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)
Dấu bằng xảy ra khi
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
\(M=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{16}{z}\right)=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2^2}{y}+\dfrac{4^2}{z}\right)\)
\(\Rightarrow M\ge\dfrac{1}{16}\dfrac{\left(1+2+4\right)^2}{x+y+z}=\dfrac{1}{16}.\dfrac{49}{1}=\dfrac{49}{16}\)
\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x+y+z=1\\\dfrac{1}{x}=\dfrac{2}{y}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\right)(x^2+y^2+z^2)\geq \left(\frac{1}{4}+\frac{1}{2}+1\right)^2\)
\(\Leftrightarrow M.1\geq \frac{49}{16}\Leftrightarrow M\geq \frac{49}{16}\)
Vậy \(M_{\min}=\frac{49}{16}\)
Dấu "=" xảy ra khi \((x,y,z)=(\sqrt{\frac{1}{7}}; \sqrt{\frac{2}{7}}; \sqrt{\frac{4}{7}})\)
\(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{y\left(y+1\right)}+\dfrac{1}{z\left(z+1\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{y}-\dfrac{1}{y+1}+\dfrac{1}{z}-\dfrac{1}{z+1}\)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) và BĐT Cauchy Shwarz dạng Engel, ta có:
\(P\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{4}\left(\dfrac{1}{x}+1+\dfrac{1}{y}+1+\dfrac{1}{z}+1\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}\)
\(\ge\dfrac{3}{4}\left[\dfrac{\left(1+1+1\right)^2}{x+y+z}\right]-\dfrac{3}{4}=\dfrac{3}{4}\left(\dfrac{9}{3}-1\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1.
Min P = 1,5 <=> x = y = z = 1.
T xài phương pháp chuẩn hóa thử, lên C3 có gặp mấy bài này chém dễ dàng, có sai thì đừng ném đá nha :vv.
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^2+x}\ge-0,75x+1,25\) \(\forall x\in\left(0;1\right)\) ( Để ra cái BĐT này t dùng casio, ra cái này là ra hết bài :D )
Thật vậy: \(\dfrac{1}{x^2+x}+0,75x-1,25\ge0\)
\(\Rightarrow\dfrac{1+0,75x\left(x^2+x\right)-1,25\left(x^2+x\right)}{x^2+x}\ge0\)
\(\Rightarrow1+0,75x^3+0,75x^2-1,25x^2+1,25x\ge0\)
\(\Rightarrow0,75\left(x-1\right)^2\left(x+\dfrac{4}{3}\right)\ge0\) \(\forall x\in\left(0;1\right)\) (BĐT này luôn đúng)
Tương tự: \(\dfrac{1}{y^2+y}\ge-0,75y+1,25\)
\(\dfrac{1}{z^2+z}\ge-0,75z+1,25\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được: \(P\ge-0,75\left(x+y+z\right)+1,25.3\)
\(P\ge1\)
Vậy Min P =1 khi x=y=z =1
\(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(M=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}=\dfrac{1^2}{16x}+\dfrac{2^2}{16y}+\dfrac{4^2}{16z}\)
\(\ge\dfrac{\left(1+2+4\right)^2}{16x+16y+16z}=\dfrac{7^2}{16\left(x+y+z\right)}=\dfrac{49}{16}\)
@Ace Legona tớ chưa học BĐT Cauchy-Schwarz ! Có cách giải khác không?
Ta có : \(P=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\)( Vì \(x+y+z=1\) )
Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :
\(\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{4\sqrt{x}}+\sqrt{y}.\dfrac{1}{2\sqrt{y}}+\sqrt{z}.\dfrac{1}{\sqrt{z}}\right)^2=\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2=\dfrac{49}{16}\)
Dấu \("="\) xảy ra khi \(x=\dfrac{1}{7}\) ; \(y=\dfrac{2}{7}\) ; \(z=\dfrac{4}{7}\)
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
\(M=\dfrac{1}{16}\left(\dfrac{1}{x^2}+\dfrac{4}{y^2}+\dfrac{16}{z^2}\right)\ge\dfrac{1}{16}.\dfrac{\left(1+2+4\right)^2}{\left(x^2+y^2+z^2\right)}=\dfrac{49}{16}\)
\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{7}\\y^2=\dfrac{2}{7}\\z^2=\dfrac{4}{7}\end{matrix}\right.\)