\(x^2+y^2=b\)

\(x^3+y^3=c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(a^3+2c=3ab\)

\(\Leftrightarrow\left(x+y\right)^3+2\left(x^3+y^3\right)=3\left(x+y\right)\left(x^2+y^2\right)\)

Ta có: \(VT=\left(x+y\right)^3+2\left(x^3+y^3\right)\)

\(=\left(x+y\right)^3+2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+2\left(x^2-xy+y^2\right)\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+2x^2-2xy+2y^2\right)\)

\(=\left(x+y\right)\left(3x^2+3y^2\right)=3\left(x+y\right)\left(x^2+y^2\right)=VP\)

Hay ta có ĐPCM

16 tháng 7 2018

Ta có :

\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x+y\right)^3-6xy\left(x+y\right)\)

\(=3\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)-6xy\left(x+y\right)\)

\(=3\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2+2xy\right)\)

\(=3\left(x+y\right)^3-3\left(x+y\right)\left(x+y\right)^2\)

\(=3\left(x+y\right)^3-3\left(x+y\right)^3\)

\(=0\)

1 tháng 8 2019

a) Vì \(x-y=1\)

\(\Rightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)

\(\Leftrightarrow x^3-y^3-3xy=1\)

1 tháng 8 2019

b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)

\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=4\)

18 tháng 9 2017

Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v

21 tháng 9 2017

Bài 1,2,3,4 đơn giản, tự làm :v

7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)

P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

5) ĐK: a>b>0

\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)

Tự phân tích

Mà a>b>0=> Chọn a=3b

Thay vào

Bài 6 tương tự bài 5

Có bất mãn chỗ nào thì ib nha bạn :))

30 tháng 10 2018

2. Đặt c + d = x

Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)

\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)

Câu 4:

      \(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)

\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)

\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)

\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)

\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )

\(\Rightarrow a-b=0,b-c=0,a-c=0\)

Thay vào A ta tính được A = 0

20 tháng 9 2018

Bài 1:

Ta có:

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(=x^2+2xy+y^2-x^2+2xy-y^2\)

\(=4xy\)

20 tháng 9 2018

Bài 2:

a) \(A=x^2+8x+2017\)

\(A=x^2+2.x.4+16+2001\)

\(A=\left(x+4\right)^2+2001\)

\(\left(x+4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+4\right)^2+2001\ge2001\) với mọi x

\(\Rightarrow Amin=2001\Leftrightarrow x=-4\)

12 tháng 10 2022

Bài 2:

a: =>6x^2-4x-10=0

=>3x^2-2x-5=0

=>3x^2-5x+3x-5=0

=>(3x-5)(x+1)=0

=>x=-1 hoặc x=5/3

b: =>(x+1)(x+2)=0

=>x=-1 hoặc x=-2

Bài 3: 

\(=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\)

Dấu = xảy ra khi x=-1/2