K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

a) Vì \(x-y=1\)

\(\Rightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)

\(\Leftrightarrow x^3-y^3-3xy=1\)

1 tháng 8 2019

b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)

\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=4\)

26 tháng 6 2015

Ta có 

x + y = 2

=> (x+y)^2 = 4

=> x^2 + 2xy + y^2 = 4 

=> 10 + 2xy= 4

=> 2xy = -6

=> xy= -3

x^3 + y^3 = ( x+Y) ( x^2 - xy + y^2) = 2 ( 10 -- 3) = 2( 10  + 3 ) = 2.13 = 26

 

14 tháng 7 2016

A=2y^3-4y^2-28y+294

14 tháng 7 2016

bucminhDễ hỉu quớ ha

24 tháng 11 2018

       \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)

\(=0+1+0=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

6 tháng 8 2019

\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)

\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)