Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải
(x+y)^2=x^2+y^2+2xy => xy= -3
x^3+y^3=(x+y)^3-3xy(x+y) = 26
2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)
(x+y)^2=a^2
=> x^2 +2xy +y^2=a^2
=> b+2xy=a^2
=> xy=\(\frac{a^2-b}{2}\)
Thay (1) vào đó ta có:
x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)
Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)
a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)
b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)
a) Ta có:
x + y = 2
=> ( x + y)2 = 4
=> x2 + 2xy + y2 = 4
=> 10 + 2xy = 4
=> 2xy = 4 - 10 = -6
=> xy = -6/2 = -3
Ta có:
A = x3 + y3
A = (x + y)(x2 - xy + y2)
A = 2(10 + 3)
A = 26
b) Ta có:
x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có:
B = x3 + y3
B = (x + y)(x2 + xy + y2)
B = a[b + (a2 - b )/2]
B = ab + (a3 - b)/2
cho x+y=2(=)(x+y)^2=4(=)x^2+y^2+2xy=4
(=)10+2xy=4(=)2xy=-6(=)xy=-3
mà x^3+y^3=(x+y)(x^2+y^2-xy)
=2(10+3)=26
vậy x^3+y^3=26
ta có: \(x+y+z=a\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=a^2\)
\(\Rightarrow b+2\left(xy+yz+xz\right)=a^2\Rightarrow xy+yz+xz=\frac{a^2-b}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow c\left(xy+yz+xz\right)=xyz\)
Ta có:\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
\(=a\left(b-\frac{a^2-b}{2}\right)+\frac{3c\left(a^2-b\right)}{2}\)
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
a) x(x-y) + y(x+y) = x^2 - xy + yx + y^2 = x^2 + y^2 = (-6)^2 + 8^2 = 100
b) x(x^2 - y ) - x^2( x + y ) + y(x^2 - x )
= x^3 - xy - x^3 -x^2y+yx^2 - xy
= ( x^3 - x^3 ) + ( x^2 y - x^2 y ) + ( -xy - xy )
= -2xy
Bạn kiểm tra lại đề nhé!
Ta có x^3 + y^3 = ( x + y )(x^2 - xy + y^2 ) (1)
( x+ y )^2 = a^2
=> x^2 + 2xy + y^2 = a^2
=> b + 2xy = a^2
=> 2xy = a^2 - b
=> xy = \(\frac{a^2-b}{2}\)
Thay vào (1) ta có
x^3 + y^3 = ( x + y)( x^2 - xy + y^2 ) = a ( b - \(\frac{a^2-b}{2}\) ) = \(a.\left(\frac{2b-a^2+b}{2}\right)=a\cdot\frac{3b-a^2}{2}\)
Vì x + y = a và x2 + y2 = b nên
(x + y)(x2 + y2) = ab
x3 + xy2 + x2y +y3 = ab
x3 + y3 = ab - x2y - xy2
x3 + y3 = ab - xy(x + y)
x3 + y3 = ab - xya
x3 + y3 = a(b - xy)
x3 +y3 =(x+y)(x2 -xy +y2) = a(b -xy) (1)
mà ta lại có: xy = ((x+y)2 -(x2+y2)) /2=(a2 -b)/2 (2)
thay (2) vào (1) ta có:
x3 +y3 = a(b - (a2 -b)/2) = a( 2b -a2 +b)/2 =a(3b - a2)/2
(\(x+y\)) = a; (\(x^3\) + y3) = b.
\(x^3\) + y3 = (\(x\) + y).(\(x^2\) - \(xy\) + y2) (1)
Thay \(x\) + y = a; \(x^3\) + y3 = b vào biểu thức (1) ta có:
a.(\(x^2\) - \(xy\) + y2) = b
\(x^2\) - \(xy\) + y2 = \(\dfrac{b}{a}\)
\(x^2\) + 2\(xy\) + y2 - 3\(xy\) = \(\dfrac{b}{a}\)
(\(x+y\))2 - 3\(xy\) = \(\dfrac{b}{a}\)
a2 - 3\(xy\) = \(\dfrac{b}{a}\)
3\(xy\) = a2 - \(\dfrac{b}{a}\)
\(xy\) = (\(a^2\) - \(\dfrac{b}{a}\)): 3
\(xy\) = \(\dfrac{a^3-b}{3a}\)
Thay \(xy\) = \(\dfrac{a^3-b}{3a}\) vào biểu thức:
\(x^2\) - \(xy\) + y2 = \(\dfrac{b}{a}\) ta có
\(x^2\) - \(\dfrac{a^3-b}{3a}\)+ y2 = \(\dfrac{b}{a}\)
\(x^2\) + y2 = \(\dfrac{b}{a}\) + \(\dfrac{a^3-b}{3a}\)
\(x^2\) + y2 = \(\dfrac{3b+a^3-b}{3a}\)
\(x^2\) + y2 = \(\dfrac{a^3+2b}{3a}\)