Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2=\left(x+y\right)^2-2xy=m^2-2n\\ x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=m^3-3mn\\ \Rightarrow x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)=\left(m^3-3mn\right)\left(m^2-2n\right)-n^2m\\ \Rightarrow x^7+y^7=\left(x^2+y^2\right)\left(x^5+y^5\right)-x^2y^2\left(x^3+y^3\right)=.....\)
Bài 1:Ta có x + y = 10 và xy=24 nên
(x+y) - 4xy = 102 - 4*24
hay x2 +y2 -2xy = 100-96
nên (x-y)2 =4
Từ đó ta có x - y = -2 hoặc x - y = 2
Nếu x - y =2 và x+y=10 thì ta được x = 6; y=4
Nếu x - y = -2 va x+y=10 thì ta được x = 4; y=6
Bài 2
Ta có: x2 + y2 - 2x + 4y + 5 = 0
hay x2 - 2x +1 + y2 +4y +4=0
nên (x-1)2 + (y+2)2 =0
mà (x-1)2 >=0; (y+2)2 >=0
Từ đó suy ra được x=1; y=-2
\(\text{a) Ta có:}xy=1\Rightarrow\hept{\begin{cases}2xy=2\\-2xy=-2\end{cases}}\)
\(\text{Ta lại có: }x^2+y^2=2\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=2+2=4\\x^2+y^2-2xy=2-2=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=4\\\left(x-y\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=\pm2\\x-y=0\end{cases}}}\)
\(\text{b) Ta có: }x+y=5\)
\(\Rightarrow\left(x+y\right)^2=25\)
\(\Rightarrow x^2+2xy+y^2=25\)
\(\Rightarrow x^2+4+y^2=25\)
\(\Rightarrow x^2+y^2=21\)
\(\text{b) Ta có: }x^2+y^2=21\)
\(\Rightarrow x^2-2xy+y^2=21-2xy\)
\(\Rightarrow\left(x-y\right)^2=21-4\)
\(\Rightarrow\left(x-y\right)^2=17\)
\(\Rightarrow x-y=\pm\sqrt{17}\)
\(x^2+y^2=\left(x+y\right)^2-2xy=6\)
\(x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)=14\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=34\)
\(\Rightarrow x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=478\)
\(x2+y2=(x+y)2−2xy=6\)
\(x3+y3=(x+y)3−3xy.(x+y)=14\)
\(x4+y4=(x2+y2)2−2(xy)2=34\)
\(⇒x7+y7=(x3+y3)(x4+y4)−(xy)3(x+y)=478\)