K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

22 tháng 12 2019

Theo mình đề này chỉ có max thôi nha!

\(B=\frac{3x^2-18x+9}{x^2-4x+4}=-\frac{3\left(x+3\right)^2}{5\left(x-2\right)^2}+\frac{18}{5}\le\frac{18}{5}\)

Đẳng thức xảy ra khi \(x=-3\)

29 tháng 12 2016

Đề không thiếu. Ở đây x^2, y^2 rồi.

mình không côsi là cô của ai

​x^2+y^2-2xy=(x-y)^2>=0 mọi xy

=>20-2xy​>=0 mọi xy

​=>xy<=10

​P=(x^2+y^2)/xy=2/xy>=2/10=1/5

28 tháng 12 2016

đề thiếu : phải có x,y > 0

áp dụng bđt Cô-si ta có: x^2+y^2 >= 2 \(\sqrt{ }\)(xy)^2=2xy

P=1/x^2 + 1/y^2 = (x^2+y^2)/(xy)^2 >= 2xy/(xy)^2=2/xy (1)

dấu "=" xảy ra <=> x^2=y^2,mà x^2+y^2=20 => 2x^2=20=>x^2=10=>x = căn 10 => y= căn 10

Thay x=y=căn 10 vào (1) ta có P >= 2/10=1/5

Vậy minP=1/5

(ko chắc) 

18 tháng 11 2022

\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)

Dấu = xảy ra khi y=5 và x=2/5y=2