
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)

\(x^3 +y^3 + 3(x^2 +y^2 ) +4(x+y) + 4 = 0 \\\ \Leftrightarrow (x+y+2)[(x+1)^{2}+(y+1)^{2}-(x+1)(y+1)+1]=0\\\ \Rightarrow x+y=-2\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=-\frac{2}{xy}\leq -\frac{2}{\frac{(x+y)^{2}}{4}}=-2\)
Dấu ''='' xảy ra khi \(x=y=-1\)

Áp dụng bđt Cauchy-schwarz ta có:
\(\frac{4}{x+1}+\frac{9}{y+2}+\frac{25}{z+3}\ge\frac{\left(2+3+5\right)^2}{x+1+y+2+z+3}=\frac{10^2}{4+6}=10\)
Dấu "=" \(\Leftrightarrow\frac{2}{x+1}=\frac{3}{y+2}=\frac{5}{z+3}\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

\(\dfrac{2}{xy}=\dfrac{4}{2xy}=\dfrac{1}{2xy}+\dfrac{3}{2xy}\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2-2xy+4xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
Hay \(1\ge2xy.2\)
\(\Rightarrow2xy\le\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{1}{2}}=2\)
\(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{4}{2xy}+\dfrac{3}{x^2+y^2}=\dfrac{1}{2xy}+\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}\)
\(\ge2+3.\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)\)
Áp dụng bất đẳng thức Cosy
\(\ge2+3.\left(\dfrac{4}{2xy+x^2+y^2}\right)\)= 2 + 12 = 14
Vậy Min M =14 khi \(x=y=\dfrac{1}{2}\)

Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v
Bài 1,2,3,4 đơn giản, tự làm :v
7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)
P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
5) ĐK: a>b>0
\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Tự phân tích
Mà a>b>0=> Chọn a=3b
Thay vào
Bài 6 tương tự bài 5
Có bất mãn chỗ nào thì ib nha bạn :))
thiếu đề nhé bạn
à x+y<=1