K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

Áp dụng bđt Cauchy-schwarz ta có:

\(\frac{4}{x+1}+\frac{9}{y+2}+\frac{25}{z+3}\ge\frac{\left(2+3+5\right)^2}{x+1+y+2+z+3}=\frac{10^2}{4+6}=10\)

Dấu "=" \(\Leftrightarrow\frac{2}{x+1}=\frac{3}{y+2}=\frac{5}{z+3}\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

1 tháng 9 2017

 P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy) 

= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]

= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)

Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz) 

Suy ra: 

P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz) 

≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2 

Vậy P min = 9/2 

Dấu = xra khi x = y = z = 1 

1 tháng 9 2017

Bài 1: 
Ta có 
A =x/(x+1) +y/(y+1)+z/(z+1) 
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1) 
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ] 
B = 1/(x+1)+1/(y+1) +1/(z+1) 
Đặt x+1=a; y+1=b;z+1 =c 
=>a+b+c=4 
4B=4(1/a+1/b+1/c) 
B= (a+b+c) (1/a+1/b+1/c) 
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a) 

Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab 
=> a/b+b/a ≥2 dấu "=" khi a=b 
Tương tự có 
a/c+c/a ≥2 ;b/c+c/b ≥2 
=>4B ≥3+2+2+2=9 
=>B ≥ 9/4 
=>A ≤ 3-9/4 = 3/4 
Vậy max A =3/4 khi a=b=c 
=>x=y=z =1/3 

Bài 2:

Giúp tui nha

4 tháng 8 2021

còn cách làm khác không ạ?

 

3 tháng 3 2020

xl mình nhầm ạ, cho x,y,z > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=2

3 tháng 3 2020

Liên tục sử dụng Bunhiacopxki dạng phân thức:

\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}\)

\(=\frac{\frac{\left(x+y+z\right)^4}{9}}{3}=\frac{2^4}{27}=\frac{16}{27}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

NV
3 tháng 3 2020

\(x^4+y^4+z^4\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{27}\left(x+y+z\right)^4=\frac{16}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)

19 tháng 10 2019

\(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

A=1+y/x+z/x+x/y+1+z/y+x/z+y/z+1

A=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)

với x,y,z > 0 Áp dụng BDT cauchy ta có

\(\hept{\begin{cases}\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\\\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\\\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\end{cases}}\)

=> A\(\ge\)3+2+2+2=9

( Dấu "=" xảy ra <=> x=y=z )

Vậy GTNN của A là 9 <=> x=y=z