Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2k6 thì dạng này EZ quá còn gì:)
\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)
\(\Leftrightarrow x-2\sqrt{xy}-15y=0\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\Leftrightarrow\sqrt{x}=5\sqrt{y}\Leftrightarrow x=25y\)
Khi đó : \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)
Ta có :\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)
\(\Leftrightarrow x-2\sqrt{xy}+y-16y=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}-4\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+4\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=5\sqrt{y}\\\sqrt{x}=-3\sqrt{y}\end{cases}}\)
\(\Leftrightarrow\sqrt{x}=5\sqrt{y}\)(do x,y>0)
\(\Leftrightarrow x=25y\)(*)
Thay (*) vào biểu thức E ta được: \(E=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)
Vậy giá trị của biểu thức E là 2.
ta có:\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\Leftrightarrow x-2\sqrt{xy}-3y-15y=0\Leftrightarrow\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\Leftrightarrow\left(\sqrt{x}+3\sqrt{y}\right)\left(\sqrt{x}-5\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+3\sqrt{y}=0\\\sqrt{x}-5\sqrt{y}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-3\sqrt{y}\left(loai\left(vi-x,y>0\right)\right)\\\sqrt{x}=5\sqrt{y}\end{cases}}}\)
thay \(\sqrt{x}=5\sqrt{y}\) vào E ta có:
\(E=\frac{2\left(5\sqrt{y}\right)^2+5\sqrt{y.y}+3y}{\left(\sqrt{5y}\right)^2+5\sqrt{y.y}-y}=\frac{y\left(50+5+3\right)}{y\left(25+5-1\right)}=2\)
vậy E =2
Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)
\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)
\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)
hay \(A=\sqrt{2018}\)
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
ĐKXĐ: \(x;y\ge16\)
\(4\left(x\sqrt{y-16}+y\sqrt{x-16}\right)=xy\)
\(\Leftrightarrow\frac{4\sqrt{y-16}}{y}+\frac{4\sqrt{x-16}}{x}=1\)
Mặt khác \(\frac{4\sqrt{y-16}}{y}+\frac{4\sqrt{x-16}}{x}\le\frac{16+y-16}{2y}+\frac{16+x-16}{2x}=\frac{1}{2}+\frac{1}{2}=1\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\sqrt{y-16}=4\\\sqrt{x-16}=4\end{matrix}\right.\) \(\Rightarrow x=y=32\)
\(\Rightarrow A=\left(32-33\right)^{2019}+\left(32-31\right)^{2020}=-1+1=0\)