Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x}{y+\sqrt{2}}\Rightarrow P.y+P\sqrt{2}=x\Rightarrow x-P.y=P\sqrt{2}\)
\(\Rightarrow2P^2=\left(x-P.y\right)^2\le\left(1+P^2\right)\left(x^2+y^2\right)=1+P^2\)
\(\Rightarrow P^2\le1\Rightarrow P_{max}=1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{\sqrt{2}}{2}\\y=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q
1) CM: AH.AB=QA.BC
2)CM: BF.BA+CE.CA=BC2
3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn
P= \(\frac{x}{y+\sqrt{2}}\)= \(x\frac{\sqrt{2}-y}{2-y^2}\) do \(x^2\) +\(y^2\)=1 =>y^2<hoặc bằng 1 => -1<=y<=1 =>\(\sqrt{2}-y>=0\)
P<,= \(\frac{\sqrt{2}x}{2-1+x^2}\)=\(\frac{\sqrt{2}x}{x^2+1}\)\(-\)\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{2}}\)= \(\frac{-x^2+2x-1}{x^2+1}+\frac{1}{\sqrt{2}}\)và bé hơn \(\frac{1}{\sqrt{2}}\)do \(\frac{-x^2+2x-1}{x^2+1}\)bé hơn 0 vậy GTLN của P là \(\frac{1}{\sqrt{2}}\)
đạt được tai x=1 và y=0