\(2x^2+3y^2=4\)

Cmr:\(x+2y\le\sqrt{\frac{22}{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

\(x+2y=\sqrt{\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+\frac{2}{\sqrt{3}}.\sqrt{3}y\right)^2}\le\sqrt{\left(\frac{1}{2}+\frac{4}{3}\right)\left(2x^2+3y^2\right)}=\sqrt{\frac{22}{3}}\)

26 tháng 10 2016

Ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)

Do đó:

\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)

\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)

1 tháng 2 2018

Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)

14 tháng 5 2017

bạn xem câu hỏi số 905663 nhé

8 tháng 5 2017

Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?

8 tháng 9 2019

CM bđt \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\).Dấu "=" xảy ra <=>a=b=c

Áp dụng bđt trên có :

\(\sqrt{2x+5}+\sqrt{2y+5}+\sqrt{2z+5}\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left[2\left(x+y+z\right)+15\right]}=\sqrt{3\left(2.1+15\right)}=\sqrt{51}\)

Dấu "=" xảy ra <=> \(2x+5=2y+5=2z+5\)

<=> \(x=y=z\)=> \(x=y=z=\frac{1}{3}\left(tm\right)\)

6 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new

Help meeee! thanks nhiều ạ

8 tháng 12 2019

Đừng tag níc phụ này.

Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1&gt;0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

7 tháng 4 2017

Thắng nên hạn chế dùng kiến thức lớp trên để giải bài lớp dưới vì thầy giáo sẽ không chấp nhận cách giải đo.

Từ bước \(P=\frac{t^2-t-3}{t^2+t+1}\) mình đề xuất sử dụng tam thức để giải

\(\Rightarrow t^2\left(P-1\right)+t\left(P+1\right)+P+3=0\)

Để PT có nghiệm thì 

\(\Delta=\left(P+1\right)^2-4\left(P-1\right)\left(P+3\right)\ge0\)

\(\Leftrightarrow-3P^2-6P+13\ge0\)

\(\Leftrightarrow\frac{-4\sqrt{3}-3}{3}\le P\le\frac{4\sqrt{3}-3}{3}\)

6 tháng 4 2017

*)Với \(y=0\) ta dễ thấy ĐPCM

*)Với \(y=0\) thì:

Đặt \(P=\frac{x^2-xy-3y^2}{x^2+xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}-3}{\left(\frac{x}{y}\right)^2+\frac{x}{y}+1}\)

Đặt \(t=\frac{x}{y}\) thì \(P=\frac{t^2-t-3}{t^2+t+1}\).Xét \(f\left(t\right)=\frac{t^2-t-3}{t^2+t+1}\)

\(f'\left(t\right)=\frac{2\left(t^2+4y+1\right)}{\left(t^2+t+1\right)^2};f'\left(t\right)=0\Leftrightarrow\orbr{\begin{cases}t=-2-\sqrt{3}\\t=-2+\sqrt{3}\end{cases}}\)

Dựa vào bảng biến thiên: Max\(f\left(t\right)=f\left(-2-\sqrt{3}\right)=\frac{4\sqrt{3}-3}{3}\)

Min\(f\left(t\right)=f\left(-2+\sqrt{3}\right)=\frac{-4\sqrt{3}-3}{3}\)

Suy ra \(\frac{-4\sqrt{3}-3}{3}\le P\le\frac{4\sqrt{3}-3}{3}\)

\(\frac{-4\sqrt{3}-3}{3}\le\frac{x^2-xy-3y^2}{x^2+xy+y^2}\le\frac{4\sqrt{3}-3}{3}\)

Lại có: \(x^2+xy+y^2\le3\) nên \(-4\sqrt{3}-3\le x^2-xy-3y^2\le4\sqrt{3}-3\)

3 tháng 5 2020

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{2}}-\sqrt{y}\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3)(4) ta có:\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

2 tháng 10 2019

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow\hept{\begin{cases}a+b+c=1\\a;b;c>0\end{cases}}\)

Và \(\frac{ab}{\sqrt{a^2+b^2+2c^2}}+\frac{bc}{\sqrt{b^2+c^2+2a^2}}+\frac{ca}{\sqrt{c^2+a^2+2b^2}}\le\frac{1}{2}\)

Ta có :

\(\frac{ab}{a^2+b^2+2c^2}=\frac{2ab}{\sqrt{\left(1+1+2\right)\left(a^2+b^2+2c^2\right)}}\)

\(\le\frac{2ab}{a+b+2c}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại roouf cộng theo vế :

\(VT\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\Rightarrow x=y=z=\frac{1}{9}\)

Chúc bạn học tốt !!!