\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

tìm giá trị nhỏ nhất c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

\(\Leftrightarrow\left(\sqrt{x+2}-\sqrt{y+2}\right)+\left(x^3-y^3\right)=0\)

\(\Leftrightarrow\dfrac{x+2-y-2}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}+x^2-xy+y^2\right)\left(x-y\right)=0\)

⇒ x = y. Thay vào A

\(\Rightarrow A=x^2+2x^2-2x^2+2x+10\)

\(=\left(x+1\right)^2+9\ge9\)

Suy ra Min A = 9 ⇔ x = y = - 1

4 tháng 12 2017

\(A=x^2+2xy-2y^2+2y+10\)

\(\Leftrightarrow A=x^2+2xy+y^2-3y^2+2y-\dfrac{1}{3}+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x^2+2xy+y^2\right)-\left(3y^2-2y+\dfrac{1}{3}\right)+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x+y\right)^2-3\left(y^2-\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x+y\right)^2-3\left[y^2-2.y.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x+y\right)^2-3\left(y-\dfrac{1}{3}\right)^2+\dfrac{31}{3}\)

Vậy GTNN của \(A=\dfrac{31}{3}\) khi \(\left\{{}\begin{matrix}x+y=0\\y-\dfrac{1}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}=0\\y=\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

19 tháng 11 2018

Từ giả thiết chuyển vế liên hợp suy ra x=y

Thế xuống dưới là đc thôi

19 tháng 11 2018

trả lời thật vl

21 tháng 11 2018

ĐK: x, y>=-2

\(pt\Leftrightarrow\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+x^2+xy+y^2\right)=0\)

\(\Leftrightarrow x=y\)

Thay vào T=\(x^2+2x^2-2x^2+2x+10=x^2+2x+1+9=\left(x+1\right)^2+9\ge9\)

"=" xảy ra khi và chỉ khi x=y=-1 (thỏa mãn)

Vậy min T=9 khi x=y=-1

19 tháng 11 2018

ý em mới hoc lớp 8 thui

23 tháng 4 2018

vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)

\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)

ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)

Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)

cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)

Dấu = xra khi x=y=1/2

k cho mk nha mn ^.^

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla