Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
=\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)
ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
=\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
=\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đk: \(-1\le x,y,z\le1\)
Ta có: \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}=\frac{x^2-y^2}{2}+\frac{1}{2}\) (bđt cosi)
CMTT: \(y\sqrt{1-z^2}\le\frac{y^2-z^2}{2}+\frac{1}{2}\)
\(z\sqrt{1-x^2}\le\frac{z^2-x^2}{2}+\frac{1}{2}\)
=> VT = \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2-y^2}{2}+\frac{y^2-z^2}{2}+\frac{z^2-x^2}{2}+\frac{3}{2}=\frac{3}{2}\)
VP = 3/2
=> VT = VP <=> \(\hept{\begin{cases}x^2=1-y^2\\y^2=1-z^2\\z^2=1-x^2\end{cases}}\) <=> \(x^2+y^2+z^2=1-y^2+1-z^2+1-x ^2\)
<=> \(2x^2+2y^2+2z^2=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(CĂN X^2+1 -X)(CĂN X^2+1+X)(CĂN Y^2+1+Y)=1
=>CĂN Y^2+1 +Y/CĂN X^2+1 +X=1
=>CĂN X^2+1-X=CĂN Y^2+1 +Y
=>X+Y=CAWNX^2+1-X-CĂN Y^2+1-Y
TƯƠNG TỰ X+Y= CĂN Y^2+1-Y-CĂN X^2+1 -X
VẬY X+Y=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bđt \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Dấu bằng xảy ra khi \(ad=bc\)
\(x\sqrt{1-y^2}+\sqrt{1-x^2}.y\le\left|x\sqrt{1-y^2}+\sqrt{1-x^2}.y\right|\le\sqrt{x^2+1-x^2}.\sqrt{1-y^2+y^2}=1\)
Dấu bằng xảy ra khi \(xy=\sqrt{1-x^2}.\sqrt{1-y^2}\Leftrightarrow x^2y^2=x^2y^2+1-\left(x^2+y^2\right)\)
\(\Leftrightarrow x^2+y^2=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
gt <=> \(x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)
<=> \(x^2\left(1-y^2\right)=1+y^2\left(1-x^2\right)-2y\sqrt{1-x^2}\)
<=> \(x^2-x^2y^2=1+y^2-x^2y^2-2y\sqrt{1-x^2}\)
<=> \(2y\sqrt{1-x^2}=y^2-x^2+1\)
<=> \(4y^2\left(1-x^2\right)=\left(y^2-x^2+1\right)^2\)
<=> \(4y^2-4x^2y^2=x^4+y^4+1-2x^2y^2-2x^2+2y^2\)
<=> \(x^4+y^4+2x^2y^2-2x^2-2y^2+1=0\)
<=> \(\left(x^4+y^4+2x^2y^2\right)-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2-1\right)^2=0\)
<=> \(x^2+y^2-1=0\)
<=> \(x^2+y^2=1\)
VẬY TA CÓ ĐPCM.
Bài của Hermit thiếu điều kiện xác định + bài làm dài
\(-1\le x;y\le1\) theo bài ra ta có:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-y^2}\)
\(=\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-x^2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x\right|=\sqrt{1-y^2}\\\left|y\right|=\sqrt{1-x^2}\end{cases}\Leftrightarrow x^2=1-y^2\Leftrightarrow x^2+y^2=1\left(đpcm\right)}\)