K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

29 tháng 10 2022

\(x^2-y=y^2-x\)

=>x^2-y^2-y+x=0

=>(x-y)(x+y)+(x-y)=0

=>(x-y)(x+y+1)=0

=>x+y=-1

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]-6x^2y^2\)

\(=-1+3xy+3xy\left[1-2xy\right]-6x^2y^2\)

=-1+6xy-12x^2y^2

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

6 tháng 4 2017

Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên  \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)

7 tháng 4 2017

Thank you very much

2 tháng 4 2016

\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\left(1\right)\)

\(x^3+y^3=1\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=1\left(2\right)\)

Đặt : x +y =t  =>  \(t^3-\frac{3}{2}t\left(t^2-1\right)=1\Leftrightarrow-t^3+3t-2=0\Leftrightarrow t=1;t=-2\)

* x + y = 1 => xy = 0

** x +y = -2  => xy = 3/2

A = x4 + y4 = (x2+y2)2 - 2(xy) = 1 - 2 .(xy)2  

 Nếu xy =0 => A =1

Nếu xy =3/2 => A = 1 - 2. 9/4 = -7/2

2 tháng 4 2016

TH2 loại nhé.