K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2019

\(x^2+y^2+1+2xy-2x-2y+y^2-4y+4=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

\(\Rightarrow\frac{x^2+5xy+51}{x-y}=\frac{1-10+51}{-1-2}=-14\)

4 tháng 9 2019

đề bài bạn sai 

30 tháng 4 2018

Từ đề bài \(\Rightarrow\left(x^2+2xy+y^2\right)-2x-2y+1+y^2-4y+4=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+y^2-4y+4=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2=0\)

Lập luận tìm được \(x=-1;y=2\)  thay vào A (tự tính)

21 tháng 6 2021

a) P = \(x^2+3x+y^2-3y-2xy+90\)

\(\left(x-y\right)^2+3\left(x-y\right)+90\)

\(5^2+3.5+90=130\)

b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)

\(4x^2+9y^2+12xy-12x-18y+118\)

\(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)

\(\left(-7\right)^2-6.\left(-7\right)+118=209\)

21 tháng 6 2021

Các bạn ơi cho tui hỏi câu này : noise in / kept / night / the / awake / city / at / the / him / .

Giúp mình với , cảm ơn.

 

22 tháng 6 2016

Câu hỏi của đỗ thuan - Toán lớp 8 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$

$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$

$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$

$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$

Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$

Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$

$\Rightarrow x-y-6=y-1=0$

$\Rightarrow y=1; x=7$

$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$

$=2021-8=2013$

24 tháng 8 2020

a) Ta có :  x - 2y = 0

=> x = 2y

Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5

= 8y2 - 2y2 - 6y2 - 4y3 + 4y+ 5

= 5

Vậy giá trị của A khi x - 2y = 0 là 5

b)Thay 11 = x - y vào biểu thức B ta có

\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)

Vậy giá trị của B khi x - y = 11 là 0

1 tháng 3 2020

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)