K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TM
25 tháng 12 2016
Xét: \(x+y+z=xyz\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Mặt khác:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)<=>\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\sqrt{3}\right)^2\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.1=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)
<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
mik ko bik
Đáp án là \(Q=x^2+y^2=3\)
Cách trình bày thì chưa thể làm được.