Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
\(\left\{{}\begin{matrix}4x^3-3x+\left(y-1\right)\sqrt{2y+1}=0\left(1\right)\\2x^2+x+\sqrt{-y\left(2y+1\right)}=0\left(2\right)\end{matrix}\right.\)
Đk: \(-\dfrac{1}{2}\le y\le0\)
pt (1)\(\Leftrightarrow\left(2y-2\right)\sqrt{2y+1}=-8x^3+6x\Leftrightarrow\left[\left(2y+1\right)-3\right]\sqrt{2y+1}=\left(-2x\right)^3-3\left(-2x\right)\left(3\right)\)
đặt \(\left\{{}\begin{matrix}u=-2x\\v=\sqrt{2y+1}\end{matrix}\right.\) pt (3) -> \(u^3-3u=v^3-3v\left(4\right)\)
có: \(-\dfrac{1}{2}\le y\le0\) nên \(0\le2y+1\le1\Rightarrow0\le\sqrt{2y+1}\le1hay0\le v\le1\)
từ (2), có: \(\sqrt{-y\left(2y+1\right)}=-2x^2-x\Rightarrow-2x^2-x\ge0\Rightarrow-\dfrac{1}{2}\le x\le0\Rightarrow0\le-2x\le1hay0\le u\le1\)
xét hàm số \(f\left(t\right)=t^3-3t\) liên tục trên [0;1]
\(f'\left(t\right)=3t^2-3=3\left(t^2-1\right)\le0\forall t\in\left[0;1\right]\) nên \(f\left(t\right)\) nghịch biến trên [0;1]
do đó (4)\(\Leftrightarrow f\left(u\right)=f\left(v\right)\Leftrightarrow u=v\Leftrightarrow-2x=\sqrt{2y+1}\Leftrightarrow y=\dfrac{4x^2-1}{2}\)
thay \(y=\dfrac{4x^2-1}{2}\) vào pt (2), có:
\(2x^2+x+\sqrt{\dfrac{\left(1-4x\right)^2}{2}\left(4x^2\right)}=0\Leftrightarrow2x^2+x-x\sqrt{2-8x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+1-\sqrt{2-8x^2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\12x^2+4x-1=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}vx=\dfrac{1}{6}\end{matrix}\right.\)
đk \(-\dfrac{1}{2}\le x\le0\) ta nhận nghiệm \(x=0;x=-\dfrac{1}{2}\)
+ Với x=0 có y=-1/2 (nhận)
+với x=-1/2 có y=0 ( nhận)
Vậy...
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)
\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết
Bài này là bài thi vào lớp 10 hả
Dễ thôi
Ta sẽ C/m:
\(\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}\ge2x+y-\dfrac{1}{2}\)
\(\Leftrightarrow\left(2xy-6x-3y+2\right)^2\ge0\) ( đúng )
C/m tương tự ta được: \(P\ge-1\). Vậy GTNN của P là -1 khi \(x=y=\dfrac{9+\sqrt{65}}{4}\) hoặc \(x=y=\dfrac{9-\sqrt{65}}{4}\)