K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Ta có : \(M=\left(7x+7y\right)+\left(x+\frac{4}{x}\right)+\left(2y+\frac{50}{y}\right)\)

\(\ge7\left(x+y\right)+2\sqrt{x.\frac{4}{x}}+2\sqrt{2y.\frac{50}{y}}\)

\(\ge7.7+4+20=73\)

Dấu "=" xảy ra khi x = 2; y = 5

29 tháng 11 2019

\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)

\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)

\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)

Dấu " = " xảy ra khi \(x=\frac{1}{3}\)

28 tháng 11 2019

Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?

mJqZcfj.png

28 tháng 11 2019

à là \(\frac{8x}{y}\)đó

8 tháng 12 2017

Áp dụng BĐT Cauchy-Schwaz: 

\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\)        \(\left(1\right)\)

 Áp dụng BĐT AM-GM:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge x+y\)           

Do đó: Áp dụng BĐT AM-GM ngược dấu: 

   \(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)

\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)   (đpcm)

Dấu "=" xảy ra khi x=y=1

Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)

27 tháng 10 2020

Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1

=> bất đẳng thức luôn xảy ra dấu bằng

Sửa đề 1 chút cho z; y; x là các số dương

Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)

=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)

Tương tự: 

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)

\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1

8 tháng 8 2018

lam thế  nao vậy?

4 tháng 11 2016

\(VT=27x^2-36x+12+\frac{8x}{y}\)

\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)

\(\ge45x^2-54x+12+24x\)

\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)

\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)

Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)