Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=xy\Leftrightarrow\frac{x+y}{xy}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=1\)
\(\frac{1}{x}+\frac{1}{y}=\frac{y+x}{xy}=\frac{xy}{xy}=1\)
giả sử x=y=2(thỏa mãn đầu bài)
thì \(\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1\)
tick đúng cho mình nha
Ta có :
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)
\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)
Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)
Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)
Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)
Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)
\(x+y=xy\Leftrightarrow\frac{x+y}{xy}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=1\)
\(\frac{1}{x}+\frac{1}{y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}=1\) (vì x+y=xy)
tick nhé
X=2 ;Y=2=>1/X+1/Y=1/2+1/2=1
TICK NHA