Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau
\(A=x+y+\frac{1}{x}+\frac{1}{y}\)
\(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)
\(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)
Dấu "=" tại x = y = 2/3
Cách khác là UCT (không hay như cách kia đâu=)
Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)
\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)
Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)
Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3
Cho x,y là các số dương thỏa mãn \(x+\frac{1}{y}\le1\) . Tìm GTNN của \(P=\frac{x}{2y}+\frac{y}{x}\)
Đặt: \(\frac{1}{y}=t\)> 0
Ta có: \(x+t\le1\)
\(P=\frac{xt}{2}+\frac{1}{xt}=\frac{xt}{2}+\frac{1}{32xt}+\frac{31}{32xt}\ge2\sqrt{\frac{xt}{2}.\frac{1}{32xt}}+\frac{31}{\frac{32\left(x+t\right)^2}{4}}=\frac{33}{8}\)
Dấu "=" xảy ra <=> x = t = 1/2 hay x = 1/2 và y = 2
Vậy GTNN của P = 33/8 đạt tại x =1/2 và y =2 .
<=>4(x+y)=5
ta có:
\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)
\(\Rightarrow S\ge5\)
Vậy Min S=5 khi x=1;y=1/4
Lời giải
Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)
Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)
\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)
\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)
Vậy ...
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+1=\frac{4}{\left(x+y\right)^2}+1=5\)
Dấu "=" xảy ra khi x=y=1/2
Đúng ko biết !?
P = 10 = 2 +8
Áp dụng BĐT Cô-si dạng Engel , ta có :
\(1=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=\frac{9}{x+y}\)
\(\Rightarrow x+y\ge9\)
nên Min x+y = 9 \(\Leftrightarrow x=3;y=6\)