K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Áp dụng bđt côsi cho 2 số dương lần lượt ta có : 

\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)

\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)

\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)

Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)

Dấu  = xảy ra khi : \(1=\frac{y}{x}\)=> x=y  và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z

=> x=y=z

Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).

10 tháng 12 2017

theo bất đẳng thức côsi thì

\(x+\frac{1}{x}\ge2\sqrt{x\times\frac{1}{x}}=2\) 

\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge2^2=4\)(1)

tương tự \(\left(y+\frac{1}{y}\right)^2\ge4\)(2)

Từ (1),(2)\(\Rightarrow\)đpcm

14 tháng 2 2018

\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\)  C/M thế này cho ít số dễ nhìn 

Quy đồng ta được

\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right)\)

\(a^2yx+a^2y^2+b^2x^2+b^2xy=a^2xy+2abxy+b^2xy\)

rút gọn

\(a^2y^2+b^2x^2=2abxy\)

\(a^2y^2+b^2x^2-2abxy=0\) hằng đẳng thức số 2

\(\left(ay+bx\right)^2=0\) 

\(ay+bx=0\Leftrightarrow ax=-bx\)

vậy \(-bx+bx=0\) đúng 

\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)

14 tháng 2 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)(1)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)k}=\frac{a+b+c}{k}\)(2)

Từ (1); (2) => \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)