\(\in Z\) chứng minh rắng:

\(N=\left(x-y\right)\lef...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

\(\Leftrightarrow N=\left[\left(x-y\right)\left(x-4y\right)\right]\left[\left(x-2y\right)\left(x-3y\right)\right]+y^4\)

\(\Leftrightarrow N=\left(x^2+4y^2-5xy\right)\left(x^2-5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+4y^2-5xy\)

Khi đó

\(N=t\left(t+2y^2\right)+y^4=t^2+2ty^2+\left(y^2\right)^2=\left(y^2+t\right)^2=\left(x^2-5xy+5y^2\right)^2\)

=> N là số chính phương

AH
Akai Haruma
Giáo viên
23 tháng 2 2017

Giải:

Ta có \(N=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)

\(\Leftrightarrow N=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)

Đặt \(x^2+5xy+4y^2=a\)

\(\Rightarrow N=a(a+2y^2)+y^4=(a+y^2)^2\) là một số chính phương

Do đó ta có đpcm.

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp

9 tháng 8 2019

a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)

\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vậy giá trị của A là một số chính phương

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Bổ sung: .... thì $A$ là số chính phương

Lời giải:

Ta có: \(A=y^4+[(x+y)(x+4y)][(x+2y)(x+3y)]\)

\(=y^4+(x^2+5xy+4y^2)(x^2+5xy+6y^2)\)

Đặt $x^2+5xy+4y^2=t(t\in\mathbb{Z}$ thì:
$A=y^4+t(t+2y^2)=y^4+t^2+2ty^2=(y^2+t)^2$ là số chính phương với mọi $y,t\in\mathbb{Z}$

Ta có đpcm.

2 tháng 4 2020

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4=\left(x^2+5xy+5y^2\right)^2\) là số chính phương

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

\(A=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)

\(A=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4\)

\(A=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)

Đặt \(x^2+5xy+4y^2=a\). Khi đó:

\(A=a(a+2y^2)+y^4=a^2+2ay^2+(y^2)^2\)

hay \(A=(a+y^2)^2\) là một số chính phương.

Ta có đpcm.

9 tháng 4 2018

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)\(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(\Rightarrow A=t^2-y^4+y^4\)

\(\Rightarrow A=t^2\)

\(\Rightarrow A=\left(x^2+5xy+5y^2\right)^2\)

\(x;y;z\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{matrix}\right.\)\(\Rightarrow x^2+5xy+5y^2\in Z\)

\(\Rightarrow\left(x^2+5xy+5y^2\right)^2\) là số chính phương

Nên a là số chính phương ( đpcm )