Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
Áp dung BĐT co- si, ta có:
\(y+z\le\sqrt{2\left(y^2+z^2\right)}\)
D đó: \(\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
tương tự: \(\frac{y^2}{z+x}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}},\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
\(\Rightarrow T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Đặt : \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{x^2+z^2}=c\left(a,b,c>0\right)\)
Khi đó: \(T\ge\frac{1}{2\sqrt{2}}\left(\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}\right)\)
\(\Leftrightarrow T\ge\frac{1}{2\sqrt{2}}\left(\left(\frac{\left(a+c\right)^2}{2b}-b\right)+\left(\frac{\left(a+b\right)^2}{2c}-c\right)+\left(\frac{\left(b+c\right)^2}{2a}-a\right)\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(2\left(a+c\right)-3b+2\left(a+b\right)-3c+2\left(b+c\right)-3a\right)\)
\(\Rightarrow T\ge\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2}\sqrt{\frac{2017}{2}}\)
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)
thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)
Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)
\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)
Dấu ''=''xảy ra khi x=y=2
\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)
Ta chứng minh \(P\ge2\Leftrightarrow x^2\sqrt{x}+y^2\sqrt{y}\ge2\sqrt{xy}\)
Thay \(2=x^2+y^2\) thì bđt trở thành \(x^2\sqrt{x}+y^2\sqrt{y}\ge\left(x^2+y^2\right)\sqrt{xy}\)
\(\Leftrightarrow x^2\sqrt{x}\left(1-\sqrt{y}\right)+y^2\sqrt{y}\left(1-\sqrt{x}\right)\ge0\)
+TH1: \(\sqrt{x}=1\Leftrightarrow x=1\Rightarrow y=1\) thì VT = 0, bđt thỏa mãn
+TH2: \(x>1\)
bđt \(\Leftrightarrow x^2\sqrt{x}\left(1-\sqrt{y}\right)\ge y^2\sqrt{y}\left(\sqrt{x}-1\right)\text{ (*)}\)
Từ \(x>1\), ta có: \(y=\sqrt{2-x^2}< 1\)
\(\Rightarrow x>y\Rightarrow x^2\sqrt{x}>y^2\sqrt{y}>0\text{ (1)}\)
Cần chứng minh \(1-\sqrt{y}\ge\sqrt{x}-1>0\text{ (2)}\) là bđt sẽ được chứng minh
(2) \(\Leftrightarrow\sqrt{x}+\sqrt{y}< 2\)
Thật vậy, ta có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\le2\)
Từ (1) và (2) suy ra (*) đúng.
+TH3: chứng minh tương tự TH2, chỉ đảo lại y và x.
Vậy \(P\ge2\). Dấu bằng đạt được tại x = y = 1.